Computer Vision Based Fish Tracking And Behaviour Detection System

生产力 水产养殖 渔业 任务(项目管理) 计算机科学 生物 工程类 经济 宏观经济学 系统工程
作者
S Shreesha,M. M. Manohara Pai,Ujjwal Verma,Radhika M. Pai
标识
DOI:10.1109/discover50404.2020.9278101
摘要

Computer vision-based technologies can be effectively adopted to enhance the performance and productivity of aquaculture industries. Application of these technologies can ease the life of fish farmers and improve the harvest of aquaculture. Fishes are much susceptible to their environment. Small changes in the water quality parameter can increase the mortality rate. Fishes are also known to show abnormal behaviour patterns when experiencing stress. Early detection of these anomalous patterns can avoid commercial losses for aqua fish farmers. Culturing of fish like Sillago-sihama is a tedious and risky task as it is highly sensitive to its environment. On the other hand, it has a high nutrient and commercial value. To this end, an attempt is made to develop a decision support system for identifying abnormal behaviour patterns of Sillago-sihama and thereby assisting the fish farmers to improve productivity. The proposed research detects three behavioural patterns of Sillago-sihama viz. swimming at the surface, no movement and frantic movement patterns. This work proposes a pattern analysis and behaviour identification model using the motion information obtained from tracking by detection method. Extensive experimental results show that the novel approach is reliable in detecting different patterns of Sillago-sihama.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ajing发布了新的文献求助10
1秒前
大我要毕业完成签到,获得积分10
1秒前
JHHHH完成签到,获得积分10
1秒前
zhanghw完成签到,获得积分10
1秒前
wubobo发布了新的文献求助10
2秒前
2秒前
patrick完成签到 ,获得积分10
2秒前
2秒前
CodeCraft应助nly采纳,获得30
2秒前
程翠丝发布了新的文献求助30
3秒前
jie完成签到,获得积分10
3秒前
3秒前
Leo完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
LiverStronger发布了新的文献求助10
5秒前
FRL完成签到,获得积分10
5秒前
6秒前
深情未来完成签到,获得积分10
6秒前
6秒前
微笑的语梦完成签到 ,获得积分10
7秒前
7秒前
7秒前
zdq10068完成签到,获得积分10
7秒前
778关注了科研通微信公众号
8秒前
牛肉面完成签到 ,获得积分10
8秒前
778关注了科研通微信公众号
8秒前
8秒前
特独斩完成签到,获得积分10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
iNk应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
迷人完成签到,获得积分20
9秒前
小景007完成签到,获得积分10
9秒前
9秒前
钮祜禄小八关注了科研通微信公众号
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730