A method for underwater acoustic signal classification using convolutional neural network combined with discrete wavelet transform

卷积神经网络 计算机科学 水下 离散小波变换 人工智能 过度拟合 模式识别(心理学) 稳健性(进化) 小波 信号处理 语音识别 人工神经网络 小波变换 数字信号处理 生物化学 海洋学 化学 基因 地质学 计算机硬件
作者
Kyong-Il Kim,Myong-Il Pak,Bong-Pil Chon,Chun-Hyok Ri
出处
期刊:International Journal of Wavelets, Multiresolution and Information Processing [World Scientific]
卷期号:19 (04): 2050092-2050092 被引量:17
标识
DOI:10.1142/s0219691320500927
摘要

The detection and classification of underwater targets such as fish are one of the major tasks of the underwater acoustic signal processing and are very important for scientific, fisheries and ocean engineering and economic fields. The convolutional neural network (CNN) combined with the discrete wavelet transform (DWT) (namely CNN_DWT) not only reduces the data processing dimension of signals and the computational costs of the signal analysis, but also improves the performance of target detection and classification. This paper proposes a new CNN to classify the images that reflected the underwater acoustic signal in the database that is made up of the scalogram of underwater acoustic signals. Also, in order to attain greater accuracy and comparable efficiency to the spatial domain processing, we convert the data to the wavelet domain. Also, we propose a deep learning method for the classification of underwater acoustic signals using the new CNN combined with DWT. Next, through the simulation experiment, we evaluate our new method for underwater acoustic signal classification using the CNN combined with DWT, by comparing with classical methods. Comparing the proposed method to spatial domain CNN and classical methods, the experimental results reveal a substantial increment in classification accuracy and noise robustness. And the learning curves show that the proposed CNN_DWT does not generate the overfitting problem and its generalization ability is high. The proposed CNN_DWT improves the classification accuracy and convergence of underwater acoustic signals than the classical CNNs. The noise robustness of the proposed CNN_DWT is higher than those of classical CNNs and back-propagation neural networks (BPNNs) for the classification of underwater acoustic signals. Experimental results show that the classification performance of new CNN combined with DWT is higher than those of classical CNNs and BPNNs for the classification of underwater acoustic signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁岁完成签到 ,获得积分10
2秒前
qiao应助愉快的豆芽采纳,获得10
6秒前
高兴天空完成签到 ,获得积分20
7秒前
珂儿完成签到 ,获得积分10
11秒前
HOPE完成签到,获得积分20
14秒前
14秒前
补作业的糖豆完成签到,获得积分10
18秒前
HOPE发布了新的文献求助10
18秒前
wenxiang发布了新的文献求助10
19秒前
缓慢的从寒完成签到,获得积分10
22秒前
26秒前
26秒前
白小超人完成签到 ,获得积分10
28秒前
EKo完成签到,获得积分10
28秒前
水门发布了新的文献求助30
31秒前
1111111111111发布了新的文献求助10
32秒前
Ankher发布了新的文献求助10
35秒前
科研通AI5应助水门采纳,获得10
37秒前
MaFY完成签到,获得积分10
41秒前
Pretrial完成签到 ,获得积分10
42秒前
47秒前
49秒前
49秒前
51秒前
Ankher完成签到,获得积分10
51秒前
斐嘿嘿发布了新的文献求助10
52秒前
GenX发布了新的文献求助10
54秒前
酷炫抽屉完成签到 ,获得积分10
55秒前
WUT完成签到,获得积分10
59秒前
阿夸完成签到,获得积分10
1分钟前
不远完成签到,获得积分10
1分钟前
1111111111111完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
pluto应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
pluto应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751