The CB index predicts prognosis of critically ill COVID-19 patients

医学 逻辑回归 内科学 单变量分析 队列 回顾性队列研究 单变量 多元分析 多元统计 数学 统计
作者
Liang Cao,Sha Zhang,Enxin Wang,Yongchao Zhang,Yang Bai,Xi Luo,Zhe Li,Feng Li,Ling Tao,Haitao Liu
出处
期刊:Annals of Translational Medicine [AME Publishing Company]
卷期号:8 (24): 1654-1654 被引量:3
标识
DOI:10.21037/atm-20-7447
摘要

The global outbreak of COVID-19 is a significant threat to public health. Among COVID-19 cases, critically ill patients account for most in-hospital deaths. Given the pressing clinical needs, identification of potential prognostic factors that would assist clinicians to determine appropriate therapeutic interventions is urgently needed.A retrospective analysis of 171 critically ill COVID-19 patients from two medical centers in Wuhan was conducted. The training and validation cohorts were comprised of 77 and 94 patients, respectively. Univariate and multivariate Logistic regression analyses were used to identify independent prognostic factors, and the linear prediction index was established and externally validated.Blood urine nitrogen (BUN) and high-sensitive C-reactive protein (hs-CRP) were independent factors negatively correlated with patient survival in the training cohort. A linear prediction model, named as the CB index (hs-CRP combined with BUN), was established and logistic regression analysis showed that this was associated with a 13% increase in death rate, with high sensitivity (86.7%) and specificity (89.7%). Patients were then divided into a high-risk group (CB index >32) and low-risk group (CB index <32) and the high-risk group showed a 56.3-fold risk of death compared with the low-risk group. Importantly, these findings were readily recaptured in the validation cohort. The efficacy of the CB index in predicting prognosis in real-world patients was then determined, which showed that patients with a higher CB index had an increased risk of death in comparison to those with a lower CB index.The CB index may be an important prognostic factor in critically ill COVID-19 patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高强发布了新的文献求助10
1秒前
tianzhanggong完成签到,获得积分10
1秒前
醉熏的荣轩完成签到 ,获得积分10
1秒前
SYLH完成签到,获得积分0
1秒前
Orange应助科研小白菜采纳,获得10
2秒前
贝贝完成签到 ,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
李二狗发布了新的文献求助200
4秒前
Kete发布了新的文献求助10
5秒前
风味土豆片完成签到 ,获得积分10
5秒前
5秒前
fei菲飞发布了新的文献求助10
6秒前
无花果应助失眠的可乐采纳,获得10
6秒前
7秒前
风不绝完成签到,获得积分10
7秒前
7秒前
所所应助77采纳,获得10
7秒前
从容冰夏发布了新的文献求助10
8秒前
8秒前
Nisaix发布了新的文献求助10
9秒前
传奇3应助MrLi采纳,获得10
9秒前
WenfengFan发布了新的文献求助10
9秒前
搞怪大炮完成签到 ,获得积分10
9秒前
嘿撒发布了新的文献求助10
9秒前
Akim应助TangQQ采纳,获得10
9秒前
lean发布了新的文献求助10
9秒前
端庄谷南完成签到 ,获得积分10
10秒前
11秒前
开朗的班完成签到 ,获得积分10
11秒前
抹茶冰淇淋完成签到 ,获得积分10
11秒前
强风吹拂完成签到,获得积分20
12秒前
施耐德完成签到,获得积分10
12秒前
yhr发布了新的文献求助10
12秒前
Sene完成签到,获得积分10
12秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074