Homeostatic Regulation of Apoptosis Governs Thymus Regeneration

造血 生物 胸腺细胞 细胞生物学 再生(生物学) 免疫学 平衡 细胞凋亡 调解人 免疫系统 T细胞 淋巴细胞生成 炎症 癌症研究 干细胞 遗传学
作者
Sinéad Kinsella,Kenneth W. Cooper,Lorenzo Iovino,Paul deRoos,Reema Jain,Jarrod A Dudakov
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 587-587
标识
DOI:10.1182/blood-2019-131513
摘要

Although the thymus has a remarkable capacity for repair following acute injury, such as that caused by the conditioning required for successful hematopoietic cell transplant (HCT), the mechanisms underlying this endogenous regeneration remain poorly understood. Delayed T cell reconstitution occurs following thymus insult and can exceed more than a year post-transplant due to a delay in full recovery of thymic output, function and T cell repertoire. Therefore, strategies to enhance T cell reconstitution post-transplant represents a rational approach to significantly improve the overall outcome of allo-HCT. We propose that enhancing thymic function will boost T cell reconstitution and substantially increase immune responses following allo-HCT. Our recent studies have identified two critical pathways that govern thymic regeneration; centered on secretion of BMP4 by endothelial cells (ECs) and IL-22 by innate lymphoid cells (Dudakov 2012 Science 336:91; Dudakov 2017 Blood 130:933; Wertheimer 2018 Sci Immunol 3:19). However, the specific regulatory mechanisms that trigger these regeneration-associated factors (RAFs) after damage remain unclear. Given that our prior work revealed that the presence of DP thymocytes suppresses the production of RAFs like IL-23, a key downstream mediator of IL-22; and the high basal rate of thymocyte apoptosis, as apoptotic thymocytes form the bulk of developing T cells, we hypothesized that apoptotic DP thymocytes were mediating this suppression of RAFs under homeostatic conditions. Upon injury, loss of DP thymocytes leads to reduced apoptotic signaling and reduced suppression of RAFs, triggering thymic recovery (Fig 1A). Consistent with this hypothesis, our preliminary data shows a significantly reduced number of apoptotic thymocytes after total body irradiation (TBI, 550 cGy), as measured by cleaved caspase 3 levels (Fig 1B). Additionally, co-culture of apoptotic thymocytes results in reduced Bmp4 expression in ECs, which is rescued by inhibition of thymocyte apoptosis using the pan-caspase inhibitor zVAD-FMK (Fig 1C). One way in which apoptotic thymocytes could induce this suppression of RAFs is via TAM receptor activation, which is supported by our data demonstrating increased Bmp4 expression in ECs treated with a pan-TAM receptor antagonist and subsequently co-cultured with apoptotic thymocytes (Fig 1D). Interestingly, TAM receptors can activate Rac1, a Rho GTPases involved in actin cytoskeletal rearrangement; converging neatly on our previous data showing that inhibition of Rac1 with small molecule inhibitors led to robust induction of Bmp4 and Il23 expression. Therefore, we propose that in steady-state, apoptotic thymocytes activate TAM receptors on ECs and DCs and induce intracellular activation of Rac1, which ultimately suppresses the production of BMP4 and IL-23; but after damage, when the number of apoptotic thymocytes drops precipitously, this suppression is abrogated, allowing for thymic regeneration (Fig 1E). Importantly, we demonstrate here that this pathway can be therapeutically targeted, as inhibition of Rac1 in vivo with EHT1864 enhances thymus cellularity in models of acute injury (Fig. 1F), and age (Fig. 1G). As post-transplant T cell deficiency is associated with an increased risk of infections, relapse of malignancy, and the development of secondary malignancies, identifying molecular targets to enhance thymic recovery will aid in the development of therapeutics with imminent clinical need. These findings not only reveal a novel molecular mechanism governing tissue regeneration, but also offer a potentially superior therapeutic strategy for boosting thymic regeneration and T cell reconstitution after damage such as that caused by allo-HCT, infection or cytoreductive therapy. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十三发布了新的文献求助10
1秒前
yalin完成签到,获得积分10
1秒前
livo发布了新的文献求助10
2秒前
科研渣渣发布了新的文献求助10
2秒前
Flori完成签到 ,获得积分10
3秒前
Akim应助乐视薯片采纳,获得10
4秒前
moon发布了新的文献求助10
4秒前
云峻雨发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
六件套发布了新的文献求助10
5秒前
天天快乐应助yaoyao采纳,获得10
6秒前
苹果从菡发布了新的文献求助10
7秒前
7秒前
7秒前
927完成签到,获得积分10
8秒前
8秒前
freedom完成签到,获得积分10
8秒前
MrChew完成签到 ,获得积分10
9秒前
满满发布了新的文献求助10
9秒前
脑洞疼应助包宇采纳,获得10
11秒前
邓佳鑫Alan应助moon采纳,获得10
11秒前
Orange应助Snieno采纳,获得10
11秒前
11秒前
斯文败类应助雨雨爱薯条采纳,获得10
11秒前
12秒前
朱文龙发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
15秒前
华贞完成签到,获得积分10
15秒前
乐视薯片发布了新的文献求助10
15秒前
mrlsrain发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819229
求助须知:如何正确求助?哪些是违规求助? 3362344
关于积分的说明 10416435
捐赠科研通 3080506
什么是DOI,文献DOI怎么找? 1694531
邀请新用户注册赠送积分活动 814686
科研通“疑难数据库(出版商)”最低求助积分说明 768388