支持向量机
计算机科学
特征选择
一般化
遗传算法
相关向量机
相关性(法律)
选择(遗传算法)
人工智能
特征(语言学)
任务(项目管理)
机器学习
算法
模式识别(心理学)
数据挖掘
数学
工程类
语言学
哲学
数学分析
系统工程
政治学
法学
作者
Holger Fröhlich,Olivier Chapelle,B Schölkopf
标识
DOI:10.1109/tai.2003.1250182
摘要
The problem of feature selection is a difficult combinatorial task in machine learning and of high practical relevance, e.g. in bioinformatics. genetic algorithms (GAs) offer a natural way to solve this problem. In this paper, we present a special genetic algorithm, which especially takes into account the existing bounds on the generalization error for support vector machines (SVMs). This new approach is compared to the traditional method of performing cross-validation and to other existing algorithms for feature selection.
科研通智能强力驱动
Strongly Powered by AbleSci AI