Gene Set Enrichment Analysis (GSEA) for Interpreting Gene Expression Profiles

基因 表型 计算生物学 生物 微阵列分析技术 基因表达 微阵列 基因表达谱 集合(抽象数据类型) 遗传学 生物信息学 计算机科学 程序设计语言
作者
Jing Shi,Michael Walker
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:2 (2): 133-137 被引量:114
标识
DOI:10.2174/157489307780618231
摘要

Gene set enrichment analysis (GSEA) is a statistical method to determine if predefined sets of genes are differentially expressed in different phenotypes. Predefined gene sets may be genes in a known metabolic pathway, located in the same cytogenetic band, sharing the same Gene Ontology category, or any user-defined set. In microarray experiments where no single gene shows statistically significant differential expression between phenotypes, GSEA has identified significant differentially expressed sets of genes, even where the average difference in expression between two phenotypes is only 20% for genes in the gene set. The gene set identified in the first GSEA analysis (oxidative phosphorylation genes differentially expressed in diabetic versus non-diabetic patients) was subsequently confirmed by independent laboratory studies published in the New England Journal of Medicine. Since the first paper on GSEA was published, many extensions and alternative methods have been described in the literature. In this paper, we describe the original GSEA algorithm, subsequent extensions and alternatives, results of some of the applications, some limitations of the methods and caveats for users, and possible future research directions. GSEA and related methods are complementary to conventional single-gene methods. Single gene methods work best when individual genes have large effects and there is small variance within the phenotype. GSEA is likely to be more powerful than conventional single-gene methods for studying the large number of common diseases in which many genes each make subtle contributions. It is a tool that deserves to be in the toolbox of bioinformatics practitioners. Keywords: Microarray, gene expression, pathway, gene set, profile
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
你我山巅自相逢完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助20
2秒前
L03完成签到,获得积分10
3秒前
Hh发布了新的文献求助10
3秒前
3秒前
4秒前
小思发布了新的文献求助10
4秒前
龙井茶完成签到,获得积分20
5秒前
keyanyan发布了新的文献求助10
5秒前
文艺花生完成签到 ,获得积分10
5秒前
完美世界应助欣于所遇采纳,获得10
6秒前
yangturboyue发布了新的文献求助10
6秒前
木子木公完成签到,获得积分10
7秒前
852应助慕迎蕾采纳,获得10
7秒前
健壮的盛开完成签到,获得积分10
7秒前
7秒前
8秒前
搜集达人应助Hh采纳,获得10
9秒前
10秒前
carnationli发布了新的文献求助10
10秒前
疯狂的小肥哥完成签到,获得积分10
10秒前
吃梨小手完成签到,获得积分10
10秒前
寂灭之时发布了新的文献求助10
10秒前
10秒前
qyk完成签到,获得积分10
11秒前
CodeCraft应助yy采纳,获得10
11秒前
李健的小迷弟应助wudilaoren采纳,获得10
11秒前
athenalin1988发布了新的文献求助10
11秒前
Jasper应助大帅采纳,获得10
11秒前
11秒前
maybe豪发布了新的文献求助10
11秒前
马佳音完成签到 ,获得积分10
12秒前
myn1990完成签到,获得积分10
12秒前
小呆完成签到 ,获得积分10
12秒前
奕初阳发布了新的文献求助10
13秒前
13秒前
搜集达人应助柒柒采纳,获得10
13秒前
情怀应助诚心闭月采纳,获得10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152477
求助须知:如何正确求助?哪些是违规求助? 4348203
关于积分的说明 13538694
捐赠科研通 4190731
什么是DOI,文献DOI怎么找? 2298295
邀请新用户注册赠送积分活动 1298517
关于科研通互助平台的介绍 1243370