Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks

计算机科学 强化学习 阿罗哈 吞吐量 时分多址 计算机网络 无线网络 无线 分布式计算 人工智能 电信
作者
Yiding Yu,Taotao Wang,Soung Chang Liew
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:37 (6): 1277-1290 被引量:302
标识
DOI:10.1109/jsac.2019.2904329
摘要

This paper investigates a deep reinforcement learning (DRL)-based MAC protocol for heterogeneous wireless networking, referred to as a Deep-reinforcement Learning Multiple Access (DLMA). Specifically, we consider the scenario of a number of networks operating different MAC protocols trying to access the time slots of a common wireless medium. A key challenge in our problem formulation is that we assume our DLMA network does not know the operating principles of the MACs of the other networks-i.e., DLMA does not know how the other MACs make decisions on when to transmit and when not to. The goal of DLMA is to be able to learn an optimal channel access strategy to achieve a certain pre-specified global objective. Possible objectives include maximizing the sum throughput and maximizing α-fairness among all networks. The underpinning learning process of DLMA is based on DRL. With proper definitions of the state space, action space, and rewards in DRL, we show that DLMA can easily maximize the sum throughput by judiciously selecting certain time slots to transmit. Maximizing general α-fairness, however, is beyond the means of the conventional reinforcement learning (RL) framework. We put forth a new multi-dimensional RL framework that enables DLMA to maximize general α-fairness. Our extensive simulation results show that DLMA can maximize sum throughput or achieve proportional fairness (two special classes of α-fairness) when coexisting with TDMA and ALOHA MAC protocols without knowing they are TDMA or ALOHA. Importantly, we show the merit of incorporating the use of neural networks into the RL framework (i.e., why DRL and not just traditional RL): specifically, the use of DRL allows DLMA (i) to learn the optimal strategy with much faster speed and (ii) to be more robust in that it can still learn a near-optimal strategy even when the parameters in the RL framework are not optimally set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助puhui采纳,获得10
1秒前
FashionBoy应助大雪封山采纳,获得10
1秒前
1秒前
勤恳万宝路完成签到,获得积分10
1秒前
2秒前
2秒前
李卓霖完成签到,获得积分10
2秒前
555555发布了新的文献求助10
3秒前
4秒前
王祖成完成签到,获得积分10
4秒前
cdh1994完成签到,获得积分0
4秒前
量子星尘发布了新的文献求助150
4秒前
Owen应助懒祝xifeng采纳,获得10
5秒前
5秒前
zcl给00的求助进行了留言
5秒前
靳士金完成签到,获得积分20
5秒前
一一发布了新的文献求助10
6秒前
7秒前
Hannah发布了新的文献求助10
7秒前
橘子小姐发布了新的文献求助10
7秒前
同学好完成签到,获得积分10
7秒前
潇洒哥完成签到,获得积分10
8秒前
zhiyuanzi发布了新的文献求助10
8秒前
ClarkLee完成签到,获得积分10
8秒前
9秒前
李爱国应助欣喜谷槐采纳,获得10
9秒前
123456789完成签到,获得积分20
9秒前
可乐加冰完成签到,获得积分10
9秒前
快乐肥宅完成签到,获得积分10
10秒前
所所应助chengyou采纳,获得10
10秒前
薄荷778完成签到,获得积分10
10秒前
赫幼蓉完成签到 ,获得积分10
10秒前
124dc发布了新的文献求助10
10秒前
10秒前
怡然芷蝶发布了新的文献求助10
10秒前
10秒前
11秒前
今后应助Hh采纳,获得10
11秒前
嘿嘿完成签到,获得积分10
11秒前
靳士金发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5014418
求助须知:如何正确求助?哪些是违规求助? 4255235
关于积分的说明 13260965
捐赠科研通 4058625
什么是DOI,文献DOI怎么找? 2219857
邀请新用户注册赠送积分活动 1229345
关于科研通互助平台的介绍 1151742