劈形算符
欧米茄
组合数学
Neumann边界条件
同种类的
物理
趋化性
有界函数
常量(计算机编程)
边界(拓扑)
数学分析
数学
量子力学
受体
计算机科学
化学
生物化学
程序设计语言
作者
Johannes Lankeit,Yulan Wang
摘要
This paper deals with the homogeneous Neumann boundary-value problem for the chemotaxis-consumption system $\left\{ \begin{align} & {{u}_{t}}=\Delta u-\chi \nabla \cdot \left( u\nabla v \right)+\kappa u-\mu {{u}^{2}},\ \ \ \ \ \ \ x\in \mathit{\Omega },t>0, \\ & {{v}_{t}}=\Delta v-uv,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in \mathit{\Omega },t>0, \\ \end{align} \right.$ in $N$-dimensional bounded smooth domains for suitably regular positive initial data. We shall establish the existence of a global bounded classical solution for suitably large $μ$ and prove that for any $μ>0$ there exists a weak solution.Moreover, in the case of $κ>0$ convergence to the constant equilibrium $(\frac{κ}{μ },0)$ is shown.
科研通智能强力驱动
Strongly Powered by AbleSci AI