Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks

移动边缘计算 计算机科学 服务器 计算卸载 资源配置 分布式计算 最优化问题 启发式 云计算 基站 计算机网络 无线网络 边缘计算 无线 算法 电信 操作系统 人工智能
作者
Tuyen X. Tran,Dario Pompili
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 856-868 被引量:882
标识
DOI:10.1109/tvt.2018.2881191
摘要

Mobile-edge computing (MEC) is an emerging paradigm that provides a capillary distribution of cloud computing capabilities to the edge of the wireless access network, enabling rich services and applications in close proximity to the end users. In this paper, an MEC enabled multi-cell wireless network is considered where each base station (BS) is equipped with a MEC server that assists mobile users in executing computation-intensive tasks via task offloading. The problem of joint task offloading and resource allocation is studied in order to maximize the users' task offloading gains, which is measured by a weighted sum of reductions in task completion time and energy consumption. The considered problem is formulated as a mixed integer nonlinear program (MINLP) that involves jointly optimizing the task offloading decision, uplink transmission power of mobile users, and computing resource allocation at the MEC servers. Due to the combinatorial nature of this problem, solving for optimal solution is difficult and impractical for a large-scale network. To overcome this drawback, we propose to decompose the original problem into a resource allocation (RA) problem with fixed task offloading decision and a task offloading (TO) problem that optimizes the optimal-value function corresponding to the RA problem. We address the RA problem using convex and quasi-convex optimization techniques, and propose a novel heuristic algorithm to the TO problem that achieves a suboptimal solution in polynomial time. Simulation results show that our algorithm performs closely to the optimal solution and that it significantly improves the users' offloading utility over traditional approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
微笑耳机完成签到,获得积分10
1秒前
1秒前
Qingzhu应助apple9515采纳,获得10
1秒前
2秒前
木木完成签到,获得积分10
4秒前
4秒前
5秒前
大模型应助hanshuo4400采纳,获得10
6秒前
晓听竹雨发布了新的文献求助10
7秒前
研友_8yX0xZ完成签到,获得积分10
7秒前
开心绫完成签到,获得积分10
8秒前
领导范儿应助张美丽采纳,获得10
9秒前
树屋和安发布了新的文献求助10
9秒前
科研通AI5应助Mid采纳,获得10
9秒前
9秒前
漂亮的盼波完成签到 ,获得积分10
10秒前
Singularity应助粥粥爱糊糊采纳,获得10
10秒前
10秒前
Mi完成签到,获得积分20
11秒前
七熵完成签到 ,获得积分10
11秒前
香菜芋头完成签到,获得积分10
12秒前
12秒前
12秒前
秀丽的正豪完成签到,获得积分10
12秒前
13秒前
13秒前
乐乐应助大马哈鱼采纳,获得10
15秒前
香菜芋头发布了新的文献求助10
16秒前
momo123完成签到 ,获得积分10
16秒前
17秒前
RON发布了新的文献求助10
17秒前
17秒前
谦让的牛排完成签到 ,获得积分10
17秒前
17秒前
美好斓发布了新的文献求助30
18秒前
cldg发布了新的文献求助10
18秒前
liz完成签到 ,获得积分10
19秒前
科研通AI5应助挚zhi采纳,获得10
19秒前
缓慢平蓝发布了新的文献求助20
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693