Thermoelectrics: From history, a window to the future

热电材料 热电效应 热电发电机 工程物理 发电 利用 计算机科学 纳米技术 材料科学 工艺工程 电气工程 功率(物理) 工程类 物理 热力学 量子力学 计算机安全
作者
Davide Beretta,Neophytos Neophytou,James M. Hodges,Mercouri G. Kanatzidis,Dario Narducci,Marisol Martín‐González,Matt Beekman,Benjamin Balke,Giacomo Cerretti,Wolfgang Tremel,Alexandra Zevalkink,Anna I. Hofmann,Christian Müller,Bernhard Dörling,Mariano Campoy‐Quiles,Mario Caironi
出处
期刊:Materials Science and Engineering R [Elsevier]
卷期号:138: 100501-100501 被引量:336
标识
DOI:10.1016/j.mser.2018.09.001
摘要

Thermoelectricity offers a sustainable path to recover and convert waste heat into readily available electric energy, and has been studied for more than two centuries. From the controversy between Galvani and Volta on the Animal Electricity, dating back to the end of the XVIII century and anticipating Seebeck’s observations, the understanding of the physical mechanisms evolved along with the development of the technology. In the XIX century Ørsted clarified some of the earliest observations of the thermoelectric phenomenon and proposed the first thermoelectric pile, while it was only after the studies on thermodynamics by Thomson, and Rayleigh’s suggestion to exploit the Seebeck effect for power generation, that a diverse set of thermoelectric generators was developed. From such pioneering endeavors, technology evolved from massive, and sometimes unreliable, thermopiles to very reliable devices for sophisticated niche applications in the XX century, when Radioisotope Thermoelectric Generators for space missions and nuclear batteries for cardiac pacemakers were introduced. While some of the materials adopted to realize the first thermoelectric generators are still investigated nowadays, novel concepts and improved understanding of materials growth, processing, and characterization developed during the last 30 years have provided new avenues for the enhancement of the thermoelectric conversion efficiency, for example through nanostructuration, and favored the development of new classes of thermoelectric materials. With increasing demand for sustainable energy conversion technologies, the latter aspect has become crucial for developing thermoelectrics based on abundant and non-toxic materials, which can be processed at economically viable scales, tailored for different ranges of temperature. This includes high temperature applications where a substantial amount of waste energy can be retrieved, as well as room temperature applications where small and local temperature differences offer the possibility of energy scavenging, as in micro harvesters meant for distributed electronics such as sensor networks. While large scale applications have yet to make it to the market, the richness of available and emerging thermoelectric technologies presents a scenario where thermoelectrics is poised to contribute to a future of sustainable future energy harvesting and management. This work reviews the broad field of thermoelectrics. Progress in thermoelectrics and milestones that led to the current state-of-the-art are presented by adopting an historical footprint. The review begins with an historical excursus on the major steps in the history of thermoelectrics, from the very early discovery to present technology. Then, the most promising thermoelectric material classes are discussed one by one in dedicated sections and subsections, carefully highlighting the technological solutions on materials growth that have represented a turning point in the research on thermoelectrics. Finally, perspectives and the future of the technology are discussed in the framework of sustainability and environmental compatibility. An appendix on the theory of thermoelectric transport in the solid state reviews the transport theory in complex crystal structures and nanostructured materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
烟花应助陶醉的开山采纳,获得10
1秒前
风衣拖地发布了新的文献求助10
1秒前
vivi完成签到 ,获得积分10
2秒前
2秒前
xiaolu完成签到,获得积分10
2秒前
田国兵发布了新的文献求助10
2秒前
朴实洪纲完成签到,获得积分20
3秒前
大方岩完成签到,获得积分10
3秒前
在水一方应助杂兵甲采纳,获得10
3秒前
LL关注了科研通微信公众号
3秒前
小尾巴完成签到 ,获得积分10
4秒前
4秒前
4秒前
千yu完成签到,获得积分10
4秒前
5秒前
moneymonoo发布了新的文献求助10
6秒前
现代的唯雪完成签到,获得积分10
8秒前
精明外套发布了新的文献求助10
9秒前
9秒前
张三三发布了新的文献求助10
10秒前
情怀应助哦哦哦采纳,获得10
10秒前
10秒前
11秒前
zwd完成签到 ,获得积分10
11秒前
Charles完成签到,获得积分10
12秒前
qwer完成签到 ,获得积分10
12秒前
12秒前
moneymonoo完成签到,获得积分20
13秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
哦哦哦完成签到,获得积分10
16秒前
16秒前
沈沈完成签到 ,获得积分10
17秒前
徐枘发布了新的文献求助10
18秒前
超级感谢大佬滴帮助完成签到,获得积分10
18秒前
英俊的铭应助Sci666采纳,获得10
18秒前
寒冷天亦发布了新的文献求助10
18秒前
华仔应助枕雪听冷冷采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265