A methodology to derive global maps of leaf traits using remote sensing and climate data

遥感 代表性启发 回归 环境科学 特质 叶面积指数 计算机科学 模块化设计 数学 统计 农学 地理 生物 操作系统 程序设计语言
作者
Álvaro Moreno‐Martínez,Gustau Camps‐Valls,Jens Kattge,Nathaniel Robinson,Markus Reichstein,Peter M. van Bodegom,K. Krämer,J. Hans C. Cornelissen,Peter B. Reich,Michael Bahn,Ülo Niinemets,Josep Peñuelas,Joseph M. Craine,Bruno Enrico Leone Cerabolini,Vanessa Minden,Daniel C. Laughlin,Lawren Sack,Brady Allred,Christopher Baraloto,Chaeho Byun,Nadejda A. Soudzilovskaia,S. W. Running
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:218: 69-88 被引量:180
标识
DOI:10.1016/j.rse.2018.09.006
摘要

This paper introduces a modular processing chain to derive global high-resolution maps of leaf traits. In particular, we present global maps at 500 m resolution of specific leaf area, leaf dry matter content, leaf nitrogen and phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio. The processing chain exploits machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data for gap filling and up-scaling of in-situ measured leaf traits. The chain first uses random forests regression with surrogates to fill gaps in the database (> 45% of missing entries) and maximizes the global representativeness of the trait dataset. Plant species are then aggregated to Plant Functional Types (PFTs). Next, the spatial abundance of PFTs at MODIS resolution (500 m) is calculated using Landsat data (30 m). Based on these PFT abundances, representative trait values are calculated for MODIS pixels with nearby trait data. Finally, different regression algorithms are applied to globally predict trait estimates from these MODIS pixels using remote sensing and climate data. The methods were compared in terms of precision, robustness and efficiency. The best model (random forests regression) shows good precision (normalized RMSE≤ 20%) and goodness of fit (averaged Pearson's correlation R = 0.78) in any considered trait. Along with the estimated global maps of leaf traits, we provide associated uncertainty estimates derived from the regression models. The process chain is modular, and can easily accommodate new traits, data streams (traits databases and remote sensing data), and methods. The machine learning techniques applied allow attribution of information gain to data input and thus provide the opportunity to understand trait-environment relationships at the plant and ecosystem scales. The new data products – the gap-filled trait matrix, a global map of PFT abundance per MODIS gridcells and the high-resolution global leaf trait maps – are complementary to existing large-scale observations of the land surface and we therefore anticipate substantial contributions to advances in quantifying, understanding and prediction of the Earth system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
芋泥脑袋完成签到,获得积分10
2秒前
shihangZhang完成签到,获得积分10
2秒前
李健的小迷弟应助YIFEI采纳,获得10
3秒前
科目三应助777采纳,获得10
6秒前
仁继宪完成签到 ,获得积分10
7秒前
9秒前
YCD应助笨笨藏鸟采纳,获得10
9秒前
科研通AI5应助烂漫的寻冬采纳,获得10
10秒前
星辰大海应助melenda采纳,获得10
10秒前
小叉叉搞快点完成签到 ,获得积分10
12秒前
完美世界应助如意的书南采纳,获得10
12秒前
hulala发布了新的文献求助30
14秒前
14秒前
16秒前
17秒前
17秒前
19秒前
科研通AI2S应助土拨鼠采纳,获得10
20秒前
华小夫完成签到,获得积分10
20秒前
777发布了新的文献求助10
21秒前
高兴荔枝发布了新的文献求助10
21秒前
pluto应助清晨的小鹿采纳,获得10
22秒前
YIFEI发布了新的文献求助10
23秒前
24秒前
yanna发布了新的文献求助150
24秒前
hulala完成签到,获得积分20
24秒前
24秒前
忐忑的青荷完成签到,获得积分10
26秒前
郁金香发布了新的文献求助10
27秒前
29秒前
小马甲应助都是采纳,获得10
29秒前
白宇完成签到 ,获得积分10
31秒前
江南之南完成签到 ,获得积分10
32秒前
33秒前
Lucas应助郁金香采纳,获得10
36秒前
zha完成签到,获得积分10
37秒前
xmy发布了新的文献求助10
37秒前
陈陈完成签到,获得积分10
38秒前
万能图书馆应助学术渣渣采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385