Leveraging Financial Social Media Data for Corporate Fraud Detection

社会化媒体 计算机科学 审计 稳健性(进化) 执行 企业社会责任 数据集 财务 情绪分析 会计 机器学习 数据科学 人工智能 业务 基因 万维网 生物 化学 生物化学 法学 生态学 政治学
作者
Wei Dong,Stephen Shaoyi Liao,Zhongju Zhang
出处
期刊:Journal of Management Information Systems [Taylor & Francis]
卷期号:35 (2): 461-487 被引量:210
标识
DOI:10.1080/07421222.2018.1451954
摘要

Corporate fraud can lead to significant financial losses and cause immeasurable damage to investor confidence and the overall economy. Detection of such frauds is a time-consuming and challenging task. Traditionally, researchers have been relying on financial data and/or textual content from financial statements to detect corporate fraud. Guided by systemic functional linguistics (SFL) theory, we propose an analytic framework that taps into unstructured data from financial social media platforms to assess the risk of corporate fraud. We assemble a unique data set including 64 fraudulent firms and a matched sample of 64 nonfraudulent firms, as well as the social media data prior to the firm’s alleged fraud violation in Accounting and Auditing Enforcement Releases (AAERs). Our framework automatically extracts signals such as sentiment features, emotion features, topic features, lexical features, and social network features, which are then fed into machine learning classifiers for fraud detection. We evaluate and compare the performance of our algorithm against baseline approaches using only financial ratios and language-based features respectively. We further validate the robustness of our algorithm by detecting leaked information and rumors, testing the algorithm on a new data set, and conducting an applicability check. Our results demonstrate the value of financial social media data and serve as a proof of concept of using such data to complement traditional fraud detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朔望发布了新的文献求助10
刚刚
foster完成签到,获得积分10
1秒前
共享精神应助可能采纳,获得10
1秒前
浮游应助Dawn采纳,获得10
1秒前
Taozhi完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
小确幸完成签到,获得积分10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
浮游应助化身孤岛的鲸采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
竹筏过海应助科研通管家采纳,获得150
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
4秒前
张三完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
laber应助科研通管家采纳,获得50
4秒前
大模型应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得150
4秒前
乐乐应助科研通管家采纳,获得20
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
gaojy发布了新的文献求助10
5秒前
5秒前
苹果果汁完成签到,获得积分10
5秒前
天才c完成签到,获得积分10
5秒前
advance完成签到,获得积分0
6秒前
6秒前
fts完成签到,获得积分10
7秒前
浮游应助xx采纳,获得10
7秒前
不想起名字完成签到,获得积分10
8秒前
Akim应助科研小天才采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166486
求助须知:如何正确求助?哪些是违规求助? 4358486
关于积分的说明 13570450
捐赠科研通 4204990
什么是DOI,文献DOI怎么找? 2306099
邀请新用户注册赠送积分活动 1305898
关于科研通互助平台的介绍 1252344