亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data Mining Meets Machine Learning: A Novel ANN‐based Multi‐body Interaction Docking Scoring Function (MBI‐score) Based on Utilizing Frequent Geometric and Chemical Patterns of Interfacial Atoms in Native Protein‐ligand Complexes

计算机科学 人工智能 机器学习 匹配(统计) 虚拟筛选 人工神经网络 功能(生物学) 数据挖掘 模式识别(心理学) 药物发现 生物信息学 数学 进化生物学 生物 统计
作者
Raed Khashan,Alexander Tropsha,Weifan Zheng
出处
期刊:Molecular Informatics [Wiley]
卷期号:41 (8) 被引量:2
标识
DOI:10.1002/minf.202100248
摘要

Abstract Accurate prediction of binding poses is crucial to structure‐based drug design. We employ two powerful artificial intelligence (AI) approaches, data‐mining and machine‐learning, to design artificial neural network (ANN) based pose‐scoring function. It is a simple machine‐learning‐based statistical function that employs frequent geometric and chemical patterns of interacting atoms at protein‐ligand interfaces. The patterns are derived by mining interfaces of “native” protein‐ligand complexes. Each interface is represented by a graph where nodes are atoms and edges connect protein‐ligand interfacial atoms located within certain cutoff distance of each other. Applying frequent subgraph mining to these interfaces provides “native” frequent patterns of interacting atoms. Subsequently, given a pose for a protein‐ligand complex of interest, the pose‐scoring function (the information‐processing unit or neuron) calculates the degree of matching between the interaction patterns present at the pose's interface and the native frequent patterns. The pose‐scoring function takes into account the frequency of occurrence of the matching native patterns, the size of the match, and the degree of geometrical similarity between pose‐specific and matching native frequent patterns. This novel “multi‐body interaction” pose‐scoring function (MBI‐Score) was validated using two databases, PDBbind and Astex‐85, and it outperformed seven commonly used commercial scoring functions. MBI‐Score is available at www.khashanlab.org/mbi‐score .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
爱妍发布了新的文献求助10
10秒前
15秒前
22秒前
爱妍完成签到,获得积分20
23秒前
彭于晏应助study采纳,获得10
25秒前
34秒前
study完成签到,获得积分10
36秒前
43秒前
可爱的函函应助study采纳,获得10
45秒前
57秒前
study发布了新的文献求助10
1分钟前
1分钟前
study发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hehe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
Huzhu应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
2分钟前
完美世界应助阿巴采纳,获得10
3分钟前
3分钟前
3分钟前
香蕉觅云应助小兔子采纳,获得10
3分钟前
4分钟前
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
hanawang应助科研通管家采纳,获得10
4分钟前
小兔子发布了新的文献求助10
4分钟前
852应助烛夜黎采纳,获得10
4分钟前
Cherry完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413838
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476074
邀请新用户注册赠送积分活动 1461541
关于科研通互助平台的介绍 1434505