亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Load forecasting of district heating system based on Informer

计算机科学 采暖系统 环境科学 工程类 机械工程
作者
Mingju Gong,Yin Zhao,Jiawang Sun,Cuitian Han,Guannan Sun,Bo Yan
出处
期刊:Energy [Elsevier BV]
卷期号:253: 124179-124179 被引量:118
标识
DOI:10.1016/j.energy.2022.124179
摘要

Accurate load forecasting of district heating systems (DHSs) is an essential guide to guaranteeing effective energy production, distribution, and rational utilization. Artificial neural networks have been extensively applied to heating energy prediction in DHS. Recently, a new time series prediction model namely Informer was proposed. This study proposes an Informer-based framework for DHS heating load forecasting. To explore the performance of Informer in heating load forecasting tasks, four forecasting models namely Autoregressive Integrated Moving Average model, Multilayer Perceptron, Recurrent Neural Network and Long Short-Term Memory network are established for comparison. The historical heating load, outdoor temperature, relative humidity, wind speed and air quality index of a DHS in Tianjin are used as the input characteristics to comprehensively assess the performance of these five forecasting strategies. The prediction results of the models are evaluated and visualized. The experimental results show that the Informer-based forecasting model can achieve the most accurate and stable predictions. Furthermore, a relative position encoding algorithm is introduced to enhance its generalization and robustness. Overall, the Informer-based framework can report satisfactory testing results. The prediction curve is fitted to the trend of temperature change which can play an excellent guiding role in heating dispatching. • A new framework based on Informer is proposed for heating load forecasting of a DHS in Tianjin, China. • Informer is compared with other four popular prediction models namely ARIMA, MLP, RNN and LSTM. • The performance of Informer in heating load forecasting has been verified. • A relative position coding is introduced to improve the prediction ability of Informer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruqayyah完成签到,获得积分20
4秒前
Yyusx完成签到 ,获得积分10
15秒前
18秒前
陈杰发布了新的文献求助10
24秒前
jyy发布了新的文献求助10
31秒前
Hello应助陈杰采纳,获得10
42秒前
科目三应助金蕊采纳,获得30
59秒前
1分钟前
97225发布了新的文献求助10
1分钟前
隐形的雁完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
1分钟前
yangjoy发布了新的文献求助10
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
科研通AI5应助97225采纳,获得10
1分钟前
1分钟前
酱豆豆完成签到 ,获得积分10
1分钟前
1分钟前
852应助LG采纳,获得10
1分钟前
NOTHING完成签到 ,获得积分10
1分钟前
JIA发布了新的文献求助30
1分钟前
2分钟前
哈哈哈发布了新的文献求助20
2分钟前
heqiujing发布了新的文献求助10
2分钟前
李剑鸿发布了新的文献求助50
2分钟前
2分钟前
王志鹏完成签到 ,获得积分10
2分钟前
爆米花应助感性的送终采纳,获得10
2分钟前
深情安青应助咸金城采纳,获得30
2分钟前
2分钟前
善学以致用应助yangjoy采纳,获得10
2分钟前
咸金城发布了新的文献求助30
2分钟前
喵喵完成签到,获得积分10
3分钟前
gb2312完成签到 ,获得积分10
3分钟前
科研通AI5应助咸金城采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
3分钟前
咸金城发布了新的文献求助10
3分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837373
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509816
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552