Depression diagnosis by deep learning using EEG signals: A systematic review

感觉 深度学习 脑电图 萧条(经济学) 人工智能 原始数据 感知 计算机科学 心理学 重性抑郁障碍 心理健康 数据科学 机器学习 精神科 认知 神经科学 社会心理学 宏观经济学 经济 程序设计语言
作者
Atefeh Safayari,Hamidreza Bolhasani
出处
期刊:Medicine in novel technology and devices [Elsevier]
卷期号:12: 100102-100102 被引量:76
标识
DOI:10.1016/j.medntd.2021.100102
摘要

Depression is considered by WHO as the main contributor to global disability and it poses dangerous threats to approximately all aspects of human life, in particular public and private health. This mental disorder is usually characterized by considerable changes in feelings, routines, or thoughts. With respect to the fact that early diagnosis of this illness would be of the critical importance in effective treatment, some developments have occurred in the purpose of depression detection. EEG signals reflect the working status of the human brain which are considered the most proper tools for a depression diagnosis. Deep learning algorithms have the capacity of pattern discovery and extracting features from the raw data which is fed into them. Owing to this significant characteristic of deep learning, recently, these methods have intensely utilized in the diverse research fields, specifically medicine and healthcare. Thereby, in this article, we aimed to review all papers concentrated on using deep learning to detect or predict depressive subjects with the help of EEG signals as input data. Regarding the adopted search method, we have finally evaluated 22 articles between 2016 and 2021. This article which is organized according to the systematic literature review (SLR) method, provides complete summaries of all exploited studies and compares the noticeable aspects of them. Moreover, some statistical analyses have been performed to gain a depth perception of the general ideas of the latest pieces of research in this area. A pattern of a five-step procedure has also been established by which almost all reviewed articles have fulfilled the goal of depression detection. Finally, open issues and challenges in this way of depression diagnosis or prediction and suggested works as the future directions have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助小小采纳,获得10
1秒前
1秒前
1秒前
wlingke应助饭小心采纳,获得20
1秒前
科研通AI6应助激动的惜雪采纳,获得10
2秒前
2秒前
2秒前
好莱坞完成签到,获得积分20
2秒前
夕荀发布了新的文献求助10
2秒前
无极微光应助sxm采纳,获得20
2秒前
3秒前
LONGLONG完成签到,获得积分20
3秒前
youxia123发布了新的文献求助10
4秒前
虚幻白玉发布了新的文献求助10
4秒前
4秒前
七七发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
开心心完成签到,获得积分10
4秒前
345完成签到,获得积分10
4秒前
5秒前
5秒前
今后应助sieena采纳,获得10
5秒前
ruicao发布了新的文献求助10
5秒前
5秒前
xie111发布了新的文献求助10
6秒前
Dreamhappy发布了新的文献求助10
7秒前
LinkWakeUp完成签到,获得积分10
7秒前
8秒前
糊涂的听蓉完成签到,获得积分10
8秒前
平常寒烟发布了新的文献求助20
8秒前
丘比特应助好莱坞采纳,获得10
9秒前
quan发布了新的文献求助10
9秒前
xiaoliu发布了新的文献求助10
9秒前
无极微光应助和谐青柏采纳,获得20
10秒前
科研通AI2S应助香香采纳,获得10
10秒前
阿景发布了新的文献求助10
10秒前
10秒前
10秒前
李爱国应助好好学习采纳,获得10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620086
求助须知:如何正确求助?哪些是违规求助? 4704553
关于积分的说明 14928430
捐赠科研通 4760801
什么是DOI,文献DOI怎么找? 2550747
邀请新用户注册赠送积分活动 1513486
关于科研通互助平台的介绍 1474498