A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season

海冰 北极的 海冰浓度 气候学 遥感 地质学 环境科学 气象学 海冰厚度 北极冰盖 自然地理学 海洋学 地理
作者
Yibin Ren,Xiaofeng Li,Wenhao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:61
标识
DOI:10.1109/tgrs.2022.3177600
摘要

This study proposes a purely data-driven model for the weekly prediction of daily sea ice concentration (SIC) of the pan-Arctic (90 N, 45 N, 180 E, 180 W) during the melting season. The model, SICNet, adopts an encoder–decoder framework with fully convolutional networks (FCNs) and can predict the SIC (covering $320\times224$ grids, each with a resolution of 25 km) one-week lead with high accuracy. We design a temporal–spatial attention module (TSAM) to help SICNet capture spatiotemporal dependencies from SIC sequences. The satellite-derived SIC data of 33 years (1988–2020) from the National Snow and Ice Data Center (NSIDC) are employed to train and test the model, 1988–2015 for training, and 2016–2020 for testing. SICNet achieves the mean absolute error (MAE) of 2.67%, the mean absolute percentage error (MAPE) of 8.67%, and the Nash–Sutcliffe efficiency (NSE) of 0.9784 in weekly predicting of SIC during the melting season. SICNet achieves better performance than existing deep-learning-based models. The TSAM reduced the MAE from 2.73% to 2.67%. We evaluate the model's performance by recursively predicting, from seven- to 28-day leads. We employ the binary accuracy (BACC) metric to measure the accuracy of the predicted sea ice extent (SIE) and compare SICNet with the anomaly persistence (Persist). SICNet shows better performance than Persist with an average BACC on the 28th day of 2016–2019 over 90% (90.17%). For the 28-day lead predictions of three extreme minimum SIE in September 2007, 2012, and 2020, SICNet outperforms Persist with an average improvement of 1.84% in BACC and $0.16 milkm^{2}$ in the SIE error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bbband发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
azang发布了新的文献求助10
5秒前
达西西完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
10秒前
黄雪峰发布了新的文献求助10
11秒前
13秒前
14秒前
oguricap发布了新的文献求助10
15秒前
可爱的函函应助宗语雪采纳,获得10
16秒前
16秒前
椒盐鲨鱼皮完成签到,获得积分10
16秒前
冷静夜蕾发布了新的文献求助10
17秒前
欢呼的开山完成签到,获得积分10
17秒前
azang完成签到,获得积分10
17秒前
Yangon完成签到,获得积分10
19秒前
oguricap完成签到,获得积分10
20秒前
20秒前
无辜的白秋完成签到,获得积分10
20秒前
20秒前
xin发布了新的文献求助10
20秒前
21秒前
科目三应助兰蕙采纳,获得10
23秒前
23秒前
Flex完成签到,获得积分10
23秒前
24秒前
25秒前
斯文败类应助白笑石采纳,获得10
26秒前
枕安完成签到,获得积分10
27秒前
秋半梦发布了新的文献求助10
27秒前
29秒前
友好板栗完成签到,获得积分10
30秒前
李健应助大侦探皮卡丘采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Advances in Motivation Science 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550741
求助须知:如何正确求助?哪些是违规求助? 3980647
关于积分的说明 12324233
捐赠科研通 3649775
什么是DOI,文献DOI怎么找? 2010153
邀请新用户注册赠送积分活动 1045469
科研通“疑难数据库(出版商)”最低求助积分说明 933935