Survey on deep learning based computer vision for sonar imagery

计算机科学 深度学习 人工智能 卷积神经网络 领域(数学) 声纳 杠杆(统计) 开放式研究 特征提取 分割 机器学习 特征(语言学) 语言学 哲学 数学 万维网 纯数学
作者
Yannik Steiniger,Dieter Kraus,Tobias Meisen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:114: 105157-105157 被引量:42
标识
DOI:10.1016/j.engappai.2022.105157
摘要

Research on the automatic analysis of sonar images has focused on classical, i.e. non deep learning based, approaches for a long time. Over the past 15 years, however, the application of deep learning in this research field has constantly grown. This paper gives a broad overview of past and current research involving deep learning for feature extraction, classification, detection and segmentation of sidescan and synthetic aperture sonar imagery. Most research in this field has been directed towards the investigation of convolutional neural networks (CNN) for feature extraction and classification tasks, with the result that even small CNNs with up to four layers outperform conventional methods. The purpose of this work is twofold. On one hand, due to the quick development of deep learning it serves as an introduction for researchers, either just starting their work in this specific field or working on classical methods for the past years, and helps them to learn about the recent achievements. On the other hand, our main goal is to guide further research in this field by identifying main research gaps to bridge. We propose to leverage the research in this field by combining available data into an open source dataset as well as carrying out comparative studies on developed deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mansis发布了新的文献求助10
刚刚
魔幻若血发布了新的文献求助10
1秒前
虎皮青椒发布了新的文献求助10
1秒前
tradimed发布了新的文献求助10
1秒前
不会学术的羊完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
3秒前
8秒前
10秒前
11秒前
lucky应助曲老师采纳,获得10
12秒前
咿咿呀呀发布了新的文献求助10
13秒前
15秒前
科研路上的干饭桶完成签到,获得积分10
15秒前
gyj发布了新的文献求助10
15秒前
15秒前
阿文文文完成签到,获得积分10
16秒前
ZoeyD完成签到 ,获得积分10
22秒前
chinwe发布了新的文献求助30
25秒前
畅快一一完成签到,获得积分10
26秒前
gyj完成签到,获得积分10
27秒前
can完成签到,获得积分10
27秒前
29秒前
机智的紫丝完成签到,获得积分10
30秒前
30秒前
31秒前
DYF完成签到,获得积分10
32秒前
Chaochao发布了新的文献求助10
32秒前
满鑫发布了新的文献求助10
32秒前
852应助美丽的梦槐采纳,获得10
39秒前
充电宝应助迷路文博采纳,获得10
39秒前
40秒前
Linden_bd完成签到 ,获得积分10
42秒前
英姑应助复方黄桃干采纳,获得10
43秒前
羊羊完成签到 ,获得积分10
43秒前
loulan完成签到,获得积分10
43秒前
Cy发布了新的文献求助10
44秒前
44秒前
zyw完成签到,获得积分10
46秒前
47秒前
瀚霖完成签到,获得积分10
47秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472