A novel random multi-subspace based ReliefF for feature selection

特征选择 线性子空间 计算机科学 模式识别(心理学) 子空间拓扑 特征(语言学) 维数之咒 降维 特征向量 人工智能 预处理器 k-最近邻算法 重量 随机子空间法 分拆(数论) 数据挖掘 数学 语言学 哲学 几何学 李代数 纯数学 组合数学
作者
Baoshuang Zhang,Yanying Li,Zheng Chai
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:252: 109400-109400 被引量:35
标识
DOI:10.1016/j.knosys.2022.109400
摘要

Feature selection is an important preprocessing technology for dimensionality reduction, which reduces the dimension of the dataset by acquiring a subset of features with the largest amount of information, and improves the classification accuracy to the greatest extent at the same time. Although different types of feature selection algorithms have achieved remarkable success, most of them lack the ability to mine information in different subspaces, and ignore the useful information contained in the abundant samples. In this research, a novel random multi-subspace based ReliefF (RBEFF) is proposed for feature selection. In this method, firstly, multiple feature partitions containing a large number of random subspaces with the same size are generated. Secondly, the ReliefF algorithm is used in each random subspace to obtain the local weight of the feature. The local weight vectors of random subspaces in each feature partition are combined to obtain the full weight vector. Finally, the full weight vectors of multiple feature partitions are integrated into the final weight vector, which contains the final weight of each feature in the original feature space feature. The feature selection is carried out dynamically according to the final weight vector. We evaluated the performance of the RBEFF on 28 UCI datasets with different sizes and compare RBEFF with 6 feature selection algorithms using KNN and DT classifiers’ three evaluation indicators. The comparisons and experimental results demonstrate the effectiveness, competitiveness, and superiority of RBEFF in solving feature selection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abab小王发布了新的文献求助10
1秒前
1秒前
Frost完成签到,获得积分10
2秒前
2秒前
研友_VZG7GZ应助小雨采纳,获得10
3秒前
NexusExplorer应助纷扬采纳,获得10
3秒前
科研通AI5应助庞伟泽采纳,获得10
3秒前
魏冉发布了新的文献求助10
3秒前
4秒前
温暖南莲发布了新的文献求助10
6秒前
6秒前
linda完成签到,获得积分10
7秒前
7秒前
7秒前
希望天下0贩的0应助浊轶采纳,获得10
8秒前
不弱小妖完成签到,获得积分10
8秒前
谢慧蕴完成签到,获得积分10
9秒前
科研糕手发布了新的文献求助30
9秒前
小南完成签到,获得积分10
10秒前
汉堡包应助龙傲天采纳,获得10
10秒前
10秒前
11秒前
11秒前
Olivia完成签到 ,获得积分10
11秒前
13秒前
一叶知秋完成签到,获得积分10
13秒前
15秒前
传奇3应助乐观的幼珊采纳,获得10
15秒前
小巧凝丹发布了新的文献求助10
15秒前
张正友发布了新的文献求助10
15秒前
16秒前
17秒前
纷扬发布了新的文献求助10
19秒前
19秒前
21秒前
纷扬完成签到,获得积分10
24秒前
JamesPei应助小城采纳,获得10
24秒前
大模型应助简单7879采纳,获得10
24秒前
Zbmd发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050750
求助须知:如何正确求助?哪些是违规求助? 4278368
关于积分的说明 13336233
捐赠科研通 4093439
什么是DOI,文献DOI怎么找? 2240279
邀请新用户注册赠送积分活动 1246913
关于科研通互助平台的介绍 1175892