化学
水解
粘度
豌豆蛋白
微观结构
作文(语言)
对照样品
色谱法
发酵
剪切减薄
持水量
食品科学
材料科学
复合材料
生物化学
结晶学
语言学
哲学
作者
Zhao Jia,Bhesh Bhandari,Claire Gaïani,Sangeeta Prakash
标识
DOI:10.1016/j.crfs.2022.03.012
摘要
Protein inadequacy is the major problem for most plant-based dairy yoghurt substitutes. This study investigated three limited degree of hydrolysis (DH: 1%, 5%, and 9%) of almond protein and the combined effect of DH and hydrolysed almond protein (HP) to non-hydrolysed almond protein (NP) ratios (HP/NP: 40:60, 20:80, 10:90 and 5:95) on the physicochemical properties of resulting fermentation induced almond-based gel (yoghurt). The gel microstructure, particle size, firmness, pH, water holding capacity (WHC), lubrication, flow, and gelation characteristics were measured and associated with the DH, composition, and SDS-PAGE results. The results show significant differences in gel samples with the same HP/NP (40:60) ratio of protein but different protein DH. A higher DH (9%) resulted in samples with lower hardness (6.03 g), viscosity (0.11 Pa s at 50 s-1), cohesiveness (0.63) and higher friction (0.203 at 10 mm/s) compared to sample with 1% DH with higher hardness - 7.34 g, viscosity at 50 s-1 - 0.16 Pa s, cohesiveness - 0.86 and friction at 10 mm/s - 0.194. Comparing samples with the same DH (5%) but different HP/NP ratios showed smaller coarse microgel particles (21.36 μm) and lower hardness (7.17 g), viscosity (0.14 Pa s at 50 s-1) and friction value (0.189 at 10 mm/s) in samples with high HP/NP (40:60) compared to sample with low HP/NP (5:95) that contained significantly large coarse microgel particles (34.61 μm) with the gel being very hard (9.38 g), highly viscous (0.32 Pa s at 50 s-1), and less lubricating (0.220 at 10 mm/s).
科研通智能强力驱动
Strongly Powered by AbleSci AI