Stratification of carotid atheromatous plaque using interpretable deep learning methods on B-mode ultrasound images

可解释性 人工智能 卷积神经网络 计算机科学 模式识别(心理学) 深度学习 超声波 机器学习 自举(财务) 放射科 医学 数学 计量经济学
作者
Theofanis Ganitidis,Μαρία Αθανασίου,Kalliopi Dalakleidi,Nikos Melanitis,Spyretta Golemati,Konstantina S. Nikita
标识
DOI:10.1109/embc46164.2021.9630402
摘要

Carotid atherosclerosis is the major cause of ischemic stroke resulting in significant rates of mortality and disability annually. Early diagnosis of such cases is of great importance, since it enables clinicians to apply a more effective treatment strategy. This paper introduces an interpretable classification approach of carotid ultrasound images for the risk assessment and stratification of patients with carotid atheromatous plaque. To address the highly imbalanced distribution of patients between the symptomatic and asymptomatic classes (16 vs 58, respectively), an ensemble learning scheme based on a sub-sampling approach was applied along with a two-phase, cost-sensitive strategy of learning, that uses the original and a resampled data set. Convolutional Neural Networks (CNNs) were utilized for building the primary models of the ensemble. A six-layer deep CNN was used to automatically extract features from the images, followed by a classification stage of two fully connected layers. The obtained results (Area Under the ROC Curve (AUC): 73%, sensitivity: 75%, specificity: 70%) indicate that the proposed approach achieved acceptable discrimination performance. Finally, interpretability methods were applied on the model's predictions in order to reveal insights on the model's decision process as well as to enable the identification of novel image biomarkers for the stratification of patients with carotid atheromatous plaque.Clinical Relevance-The integration of interpretability methods with deep learning strategies can facilitate the identification of novel ultrasound image biomarkers for the stratification of patients with carotid atheromatous plaque.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hjyylab应助薛定谔的猫采纳,获得10
刚刚
果果发布了新的文献求助10
刚刚
暮光的加纳完成签到,获得积分10
1秒前
mmz666发布了新的文献求助10
2秒前
椒盐丸子发布了新的文献求助10
2秒前
MELOM发布了新的文献求助10
2秒前
wxy完成签到 ,获得积分10
3秒前
3秒前
yy发布了新的文献求助10
4秒前
4秒前
乐正熠彤发布了新的文献求助10
4秒前
aaaaa小柴完成签到,获得积分10
4秒前
xzn1123给红色小鲤鱼的求助进行了留言
5秒前
鳗鱼千雁完成签到,获得积分10
5秒前
5秒前
5秒前
Sam完成签到,获得积分10
6秒前
6秒前
科研通AI5应助daSB采纳,获得30
7秒前
宓沂完成签到,获得积分10
7秒前
7秒前
小值钱完成签到,获得积分10
8秒前
跳跳熊完成签到,获得积分10
8秒前
liynn1完成签到,获得积分10
8秒前
宋建鑫完成签到 ,获得积分10
8秒前
ppp完成签到,获得积分10
9秒前
Jasper应助有魅力的梦秋采纳,获得10
9秒前
张昭蓉完成签到,获得积分10
9秒前
11秒前
safa完成签到,获得积分10
11秒前
俏皮的匕发布了新的文献求助10
11秒前
11秒前
白桃战士完成签到,获得积分10
12秒前
科目三应助russing采纳,获得10
12秒前
顾难摧发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
16秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《续天台宗全书•史传1--天台大师传注释类》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838908
求助须知:如何正确求助?哪些是违规求助? 3381351
关于积分的说明 10517883
捐赠科研通 3100836
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821920
科研通“疑难数据库(出版商)”最低求助积分说明 773048