A novel method for adaptive control of deformable mirrors

控制理论(社会学) 非线性系统 执行机构 计算机科学 自适应控制 变形镜 基础(线性代数) 控制系统 控制工程 控制(管理) 人工智能 工程类 数学 物理 电气工程 量子力学 几何学
作者
Aleksandar Haber
标识
DOI:10.1117/12.2609238
摘要

For sufficiently wide ranges of applied control signals (control voltages), MEMS and piezoelectric Deformable Mirrors (DMs), exhibit nonlinear behavior. The nonlinear behavior manifests itself in nonlinear actuator couplings, nonlinear actuator deformation characteristics, and in the case of piezoelectric DMs, hysteresis. Furthermore, in a number of situations, DM behavior can change over time, and this requires a procedure for updating the DM models on the basis of the observed data. If not properly modeled and if not taken into account when designing control algorithms, nonlinearities, and time-varying DM behavior, can significantly degrade the achievable closed-loop performance of Adaptive Optics (AO) systems. Widely used approaches for DM control are based on pre-estimated linear time-invariant DM models in the form of influence matrices. Often, these models are not being updated during system operation. Consequently, when nonlinear DM behavior is being excited by control signals with wide operating ranges, or when the DM behavior changes over time, the state-of-the-art DM control approaches relying upon linear control methods, might not be able to produce a satisfactory closed-loop performance of an AO system. Motivated by these key facts, we present a novel method for data-driven DM control. Our approach combines a simple open-loop control method with a recursive least squares method for dynamically updating the DM model. The DM model is constantly being updated on the basis of the dynamically changing DM operating points. That is, the proposed method updates both the control actions and the DM model during the system operation. We experimentally verify this approach on a Boston Micromachines MEMS DM with 140 actuators. Preliminary experimental results reported in this manuscript demonstrate good potential for using the developed method for DM control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜蛋挞发布了新的文献求助10
刚刚
超级向薇发布了新的文献求助10
1秒前
hulahula完成签到 ,获得积分10
1秒前
东郭雁梅发布了新的文献求助30
1秒前
桐桐应助樊焕焕采纳,获得10
1秒前
粥粥完成签到,获得积分0
4秒前
lemon发布了新的文献求助10
5秒前
5秒前
Benjamin发布了新的文献求助10
5秒前
5秒前
6秒前
曾斯诺完成签到 ,获得积分10
6秒前
呼啦呼啦完成签到 ,获得积分10
6秒前
6秒前
pinecone发布了新的文献求助10
8秒前
8秒前
8秒前
在水一方应助子寒采纳,获得10
9秒前
9秒前
10秒前
顾矜应助小南采纳,获得10
10秒前
杨啸林完成签到 ,获得积分10
10秒前
泓泽完成签到,获得积分20
11秒前
赘婿应助活力的紫菜采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
14秒前
完美世界应助IF>100采纳,获得10
14秒前
14秒前
丘比特应助pinecone采纳,获得10
15秒前
15秒前
华仔应助sola采纳,获得10
16秒前
吕半鬼完成签到,获得积分0
16秒前
雪碧发布了新的文献求助10
17秒前
领导范儿应助fu采纳,获得10
17秒前
17秒前
贪玩堡玉完成签到,获得积分10
18秒前
18秒前
Thrain发布了新的文献求助10
20秒前
草莓熊发布了新的文献求助20
20秒前
年年年年完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5520726
求助须知:如何正确求助?哪些是违规求助? 4612385
关于积分的说明 14533406
捐赠科研通 4549963
什么是DOI,文献DOI怎么找? 2493270
邀请新用户注册赠送积分活动 1474552
关于科研通互助平台的介绍 1446091