From CNNs to GANs for cross-modality medical image estimation

模态(人机交互) 人工智能 卷积神经网络 计算机科学 鉴别器 图像(数学) 模式识别(心理学) 深度学习 估计 医学影像学 人工神经网络 计算机视觉 电信 探测器 经济 管理
作者
Azin Shokraei Fard,David C. Reutens,Viktor Vegh
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105556-105556 被引量:33
标识
DOI:10.1016/j.compbiomed.2022.105556
摘要

Cross-modality image estimation involves the generation of images of one medical imaging modality from that of another modality. Convolutional neural networks (CNNs) have been shown to be useful in image-to-image intensity projections, in addition to identifying, characterising and extracting image patterns. Generative adversarial networks (GANs) use CNNs as generators and estimated images are classified as true or false based on an additional discriminator network. CNNs and GANs within the image estimation framework may be considered more generally as deep learning approaches, since medical images tend to be large in size, leading to the need for large neural networks. Most research in the CNN/GAN image estimation literature has involved the use of MRI data with the other modality primarily being PET or CT. This review provides an overview of the use of CNNs and GANs for cross-modality medical image estimation. We outline recently proposed neural networks and detail the constructs employed for CNN and GAN image-to-image synthesis. Motivations behind cross-modality image estimation are outlined as well. GANs appear to provide better utility in cross-modality image estimation in comparison with CNNs, a finding drawn based on our analysis involving metrics comparing estimated and actual images. Our final remarks highlight key challenges faced by the cross-modality medical image estimation field, including how intensity projection can be constrained by registration (unpaired versus paired data), use of image patches, additional networks, and spatially sensitive loss functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
karL完成签到,获得积分10
3秒前
姒嵛完成签到 ,获得积分10
3秒前
陈年旧事发布了新的文献求助10
7秒前
小二郎应助黄金矿工采纳,获得10
8秒前
魔幻灯泡完成签到,获得积分10
10秒前
奋斗的雅柏完成签到,获得积分20
11秒前
Sunny完成签到,获得积分10
11秒前
木木SCI完成签到 ,获得积分10
11秒前
Xiaoxiao应助范_aaaaaa采纳,获得10
13秒前
机灵柚子应助昏睡的笑南采纳,获得10
14秒前
米奇的妙妙屋完成签到,获得积分10
14秒前
ding应助Joyi采纳,获得10
15秒前
CipherSage应助sjx00100采纳,获得10
15秒前
kiki完成签到 ,获得积分10
16秒前
天玄一刀完成签到,获得积分10
16秒前
和谐的果汁完成签到 ,获得积分10
17秒前
阔达的雁凡完成签到,获得积分10
17秒前
JamesPei应助ddd采纳,获得10
19秒前
Thomas完成签到,获得积分20
20秒前
光之战士完成签到 ,获得积分10
20秒前
sjx00100完成签到,获得积分10
24秒前
SYLH应助LaTeXer采纳,获得10
24秒前
妖孽的二狗完成签到 ,获得积分10
25秒前
FANG应助nn采纳,获得10
25秒前
26秒前
27秒前
27秒前
河豚不擦鞋完成签到 ,获得积分10
28秒前
灰鸽舞完成签到 ,获得积分10
29秒前
Handy完成签到,获得积分10
30秒前
Mark发布了新的文献求助10
31秒前
31秒前
白夜完成签到 ,获得积分10
31秒前
cdercder应助阔达的雁凡采纳,获得10
31秒前
京莫完成签到,获得积分10
31秒前
uss完成签到,获得积分10
32秒前
32秒前
33秒前
CodeCraft应助懦弱的龙猫采纳,获得30
33秒前
sjx00100发布了新的文献求助10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790