抑制因子lexA
抑制因子
突变体
生物
操作员(生物学)
YY1年
DNA
结合位点
分子生物学
基因
遗传学
基因表达
发起人
作者
Andrew Thliveris,John W. Little,David W. Mount
出处
期刊:Biochimie
[Elsevier BV]
日期:1991-04-01
卷期号:73 (4): 449-456
被引量:45
标识
DOI:10.1016/0300-9084(91)90112-e
摘要
To analyze the DNA binding domain of E coli LexA reprressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.
科研通智能强力驱动
Strongly Powered by AbleSci AI