清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Neural Networks for Large Vocabulary Handwritten Text Recognition

计算机科学 循环神经网络 深度学习 人工智能 人工神经网络 隐马尔可夫模型 感知器 时滞神经网络 模式识别(心理学) 语音识别 机器学习
作者
Théodore Bluche
出处
期刊:Le Centre pour la Communication Scientifique Directe - HAL - Diderot 被引量:57
摘要

The automatic transcription of text in handwritten documents has many applications, from automatic document processing, to indexing and document understanding. One of the most popular approaches nowadays consists in scanning the text line image with a sliding window, from which features are extracted, and modeled by Hidden Markov Models (HMMs). Associated with neural networks, such as Multi-Layer Perceptrons (MLPs) or Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs), and with a language model, these models yield good transcriptions. On the other hand, in many machine learning applications, including speech recognition and computer vision, deep neural networks consisting of several hidden layers recently produced a significant reduction of error rates. In this thesis, we have conducted a thorough study of different aspects of optical models based on deep neural networks in the hybrid neural network / HMM scheme, in order to better understand and evaluate their relative importance. First, we show that deep neural networks produce consistent and significant improvements over networks with one or two hidden layers, independently of the kind of neural network, MLP or RNN, and of input, handcrafted features or pixels. Then, we show that deep neural networks with pixel inputs compete with those using handcrafted features, and that depth plays an important role in the reduction of the performance gap between the two kinds of inputs, supporting the idea that deep neural networks effectively build hierarchical and relevant representations of their inputs, and that features are automatically learnt on the way. Despite the dominance of LSTM-RNNs in the recent literature of handwriting recognition, we show that deep MLPs achieve comparable results. Moreover, we evaluated different training criteria. With sequence-discriminative training, we report similar improvements for MLP/HMMs as those observed in speech recognition. We also show how the Connectionist Temporal Classification framework is especially suited to RNNs. Finally, the novel dropout technique to regularize neural networks was recently applied to LSTM-RNNs. We tested its effect at different positions in LSTM-RNNs, thus extending previous works, and we show that its relative position to the recurrent connections is important. We conducted the experiments on three public databases, representing two languages (English and French) and two epochs, using different kinds of neural network inputs: handcrafted features and pixels. We validated our approach by taking part to the HTRtS contest in 2014. The results of the final systems presented in this thesis, namely MLPs and RNNs, with handcrafted feature or pixel inputs, are comparable to the state-of-the-art on Rimes and IAM. Moreover, the combination of these systems outperformed all published results on the considered databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cadcae完成签到,获得积分10
21秒前
萝卜猪完成签到,获得积分10
40秒前
会笑的蜗牛完成签到 ,获得积分10
1分钟前
浮云完成签到 ,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
ning_qing完成签到 ,获得积分10
2分钟前
mzhang2完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
王淳完成签到 ,获得积分10
2分钟前
神外魔法师完成签到,获得积分10
3分钟前
5433完成签到 ,获得积分10
3分钟前
牛马完成签到 ,获得积分10
3分钟前
紫熊完成签到,获得积分10
5分钟前
CodeCraft应助快乐小狗采纳,获得10
5分钟前
白菜完成签到 ,获得积分10
6分钟前
woxinyouyou完成签到,获得积分0
6分钟前
满意的伊完成签到,获得积分10
6分钟前
宇文非笑完成签到 ,获得积分10
7分钟前
bc应助科研通管家采纳,获得30
7分钟前
bc应助科研通管家采纳,获得30
7分钟前
bc应助科研通管家采纳,获得30
7分钟前
bc应助科研通管家采纳,获得30
7分钟前
知行者完成签到 ,获得积分10
9分钟前
9分钟前
快乐小狗发布了新的文献求助10
9分钟前
桐桐应助快乐小狗采纳,获得10
9分钟前
CherylZhao完成签到,获得积分10
9分钟前
bc应助科研通管家采纳,获得30
9分钟前
ZJakariae应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
万能图书馆应助Tiger-Cheng采纳,获得20
9分钟前
10分钟前
bc应助科研通管家采纳,获得30
11分钟前
bc应助科研通管家采纳,获得30
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402318
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728