Combining MRI and Histologic Imaging Features for Predicting Overall Survival in Patients with Glioma.

磁共振成像 放射科 无线电技术 胶质母细胞瘤
作者
Saima Rathore,Ahmad Chaddad,Muhammad Aksam Iftikhar,Michel Bilello,Ahmed Abdulkadir
出处
期刊:Radiology 卷期号:3 (4) 被引量:1
标识
DOI:10.1148/rycan.2021200108
摘要

Purpose To test the hypothesis that combined features from MR and digital histopathologic images more accurately predict overall survival (OS) in patients with glioma compared with MRI or histopathologic features alone. Materials and Methods Multiparametric MR and histopathologic images in patients with a diagnosis of glioma (high- or low-grade glioma [HGG or LGG]) were obtained from The Cancer Imaging Archive (original images acquired 1983-2008). An extensive set of engineered features such as intensity, histogram, and texture were extracted from delineated tumor regions in MR and histopathologic images. Cox proportional hazard regression and support vector machine classification (SVC) models were applied to (a) MRI features only (MRIcox/svc), histopathologic features only (HistoPathcox/svc), and (c) combined MRI and histopathologic features (MRI+HistoPathcox/svc) and evaluated in a split train-test configuration. Results A total of 171 patients (mean age, 51 years ± 15; 91 men) were included with HGG (n = 75) and LGG (n = 96). Median OS was 467 days (range, 3-4752 days) for all patients, 350 days (range, 15-1561 days) for HGG, and 595 days (range, 3-4752 days) for LGG. The MRI+HistoPathcox model demonstrated higher concordance index (C-index) compared with MRIcox and HistoPathcox models on all patients (C-index, 0.79 vs 0.70 [P = .02; MRIcox] and 0.67 [P = .01; HistoPathcox]), patients with HGG (C-index, 0.78 vs 0.68 [P = .03; MRIcox] and 0.64 [P = .01; HistoPathcox]), and patients with LGG (C-index, 0.88 vs 0.62 [P = .008; MRIcox] and 0.62 [P = .006; HistoPathcox]). In binary classification, the MRI+HistoPathsvc model (area under the receiver operating characteristic curve [AUC], 0.86 [95% CI: 0.80, 0.95]) had higher performance than the MRIsvc model (AUC, 0.68 [95% CI: 0.50, 0.81]; P = .01) and the HistoPathsvc model (AUC, 0.72 [95% CI: 0.60, 0.85]; P = .04). Conclusion The model combining features from MR and histopathologic images had higher accuracy in predicting OS compared with the models with MR or histopathologic images alone. Keywords: Survival Prediction, Gliomas, Digital Pathology Imaging, MR Imaging, Machine Learning Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利奇迹完成签到,获得积分10
2秒前
luxkex发布了新的文献求助10
4秒前
wwww发布了新的文献求助40
4秒前
4秒前
6秒前
6秒前
7秒前
天涯完成签到,获得积分10
8秒前
8秒前
seven关注了科研通微信公众号
8秒前
10秒前
ding应助巴拉巴拉采纳,获得10
10秒前
杨旸发布了新的文献求助10
10秒前
石一完成签到,获得积分10
11秒前
酷波er应助姜伟采纳,获得10
12秒前
12秒前
ls完成签到,获得积分10
12秒前
球球w发布了新的文献求助30
13秒前
小熊发布了新的文献求助10
14秒前
Eurus发布了新的文献求助30
14秒前
jerry完成签到,获得积分10
16秒前
朝朝完成签到,获得积分10
18秒前
19秒前
20秒前
nenoaowu发布了新的文献求助30
20秒前
王翎力完成签到,获得积分10
21秒前
77关注了科研通微信公众号
21秒前
Xuan_Y完成签到,获得积分10
21秒前
巅峰囚冰完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
祁依欧欧完成签到,获得积分10
23秒前
24秒前
吃老鼠的鱼完成签到,获得积分10
28秒前
XXXXX完成签到 ,获得积分10
28秒前
zasideler完成签到,获得积分10
29秒前
bob发布了新的文献求助10
29秒前
球球w完成签到,获得积分10
30秒前
Himanny发布了新的文献求助30
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838514
求助须知:如何正确求助?哪些是违规求助? 3380889
关于积分的说明 10516101
捐赠科研通 3100459
什么是DOI,文献DOI怎么找? 1707506
邀请新用户注册赠送积分活动 821794
科研通“疑难数据库(出版商)”最低求助积分说明 772947