Quantifying Asymmetry Between Medial and Lateral Compartment Knee Loading Forces Using Acoustic Emissions

膝关节 计算机科学 自编码 蹲下 人口 舱室(船) 骨关节炎 髌骨 生物医学工程 人工智能 模式识别(心理学) 物理医学与康复 医学 深度学习 解剖 地质学 外科 病理 替代医学 海洋学 环境卫生
作者
Hyeon Ki Jeong,Sungtae An,Kinsey Herrin,Keaton L. Scherpereel,Aaron J. Young,Omer T. Inan
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (4): 1541-1551 被引量:6
标识
DOI:10.1109/tbme.2021.3124487
摘要

Objective: Osteoarthritis is the most common type of knee arthritis that can be affected by excessive and compressive loads and can affect one or more compartments of the knee: medial, lateral, and patellofemoral. The medial compartment tends to be the most vulnerable to injuries and research suggests that a better understanding of the medial to lateral load distribution conditions could provide insights to the quantitative usage of knee compartments in activities of daily life. Methods: Prior to study in an osteoarthritic clinical population which may present with various complicating anatomical and physiological changes, we investigate knee acoustical emissions of able-bodied individuals during a varying width squat exercise which simulates loading asymmetries that would typically be seen in this clinical population. To that end, we present a novel method to quantify the directional bias of asymmetry between the medial and lateral compartment knee joint load in healthy individuals by recording knee acoustical emissions and analyzing them using a deep neural network in a subject independent model. We placed four miniature contact microphones on the medial and lateral sides of the patella on both the left and right leg. We compared the handcrafted audio features with the automated features extracted from the convolutional autoencoder which is an unsupervised model that learns the comprehensive representation of the input to determine whether these automated features can better represent the signal's characteristic in regard to the structural asymmetry of the knee joint. The input to the convolutional auto encoder (CAE) is a time-frequency representation and different types of these images such as spectrogram and scalogram are compared. We alsocompared the multi-sensor fusion approach with the performance of a single sensor to determine the robustness of using multiple sensors. Results: Using a representation learning based approach, we developed a subject independent classification model capable of classifying the asymmetry of the medial and lateral joint load across subjects (accuracy = 83%). Conclusion: The result indicates that wavelet coherence which is the time-frequency correlation of two signals using a wavelet transform yields the best accuracy. Significance: These findings suggest that acoustic signals could potentially quantify the direction of medial to lateral load distribution which would broaden the implications for wearable sensing technology for monitoring cartilage health and factors responsible for cartilage breakdown and assessing appropriate rehabilitation exercises without overloading on one side.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Zb151n发布了新的文献求助30
刚刚
王宗廷发布了新的文献求助30
刚刚
能干的阿拉蕾完成签到 ,获得积分10
刚刚
刚刚
刚刚
loricae2005完成签到,获得积分10
1秒前
传奇3应助勤劳滑板采纳,获得30
1秒前
2秒前
科研通AI5应助Robe采纳,获得10
2秒前
2秒前
2秒前
呆啊完成签到,获得积分10
3秒前
3秒前
如意伟诚完成签到,获得积分10
3秒前
广州队完成签到,获得积分10
3秒前
叨叨发布了新的文献求助10
3秒前
今后应助云云采纳,获得10
4秒前
4秒前
罗rr完成签到 ,获得积分20
4秒前
星希发布了新的文献求助10
4秒前
飞宇发布了新的文献求助10
4秒前
天天向上完成签到,获得积分20
5秒前
FashionBoy应助laohu2采纳,获得10
5秒前
研友_ZGR0jn完成签到,获得积分10
5秒前
5秒前
5秒前
科研小菜鸟应助荷月初六采纳,获得20
5秒前
布丁发布了新的文献求助30
6秒前
活着完成签到,获得积分10
6秒前
吕大本事完成签到,获得积分10
6秒前
科研通AI5应助正直的语蝶采纳,获得10
6秒前
学术乞丐发布了新的文献求助10
7秒前
7秒前
8秒前
苗啊苗发布了新的文献求助10
8秒前
8秒前
深情安青应助夏先生采纳,获得10
8秒前
zheng发布了新的文献求助10
8秒前
8秒前
yishuihan发布了新的文献求助10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868