估计员
协方差交集
马尔可夫过程
马尔可夫链
计算机科学
乘法函数
噪音(视频)
噪声测量
算法
计算
协方差
传感器融合
乘性噪声
数学
数学优化
降噪
统计
协方差矩阵的估计
人工智能
电信
机器学习
图像(数学)
信号传递函数
数学分析
模拟信号
传输(电信)
标识
DOI:10.1109/yac53711.2021.9486558
摘要
The distributed fusion estimation problem is studied for multiple sensors networks with multiplicative noise and nonuniform samplings, where the nonuniform sampling process is modeled as a multi-state Markov chain. Based on the state augmented method, a multi-sensor single-rate system with Markovian jumping parameters is obtained. Further, local estimators are derived and a distributed covariance intersection fusion estimator is proposed, which avoids the computation of the estimation error cross-covanriance matrices between any two local estimators, thereby reducing the computaional cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI