CBCapsNet: A novel writer-independent offline signature verification model using a CNN-based architecture and capsule neural networks

计算机科学 卷积神经网络 签名(拓扑) 人工智能 模式识别(心理学) 深度学习 生物识别 特征提取 过程(计算) 特征(语言学) 联营 数据挖掘 机器学习 语言学 哲学 几何学 数学 操作系统
作者
Ebrahim Parcham,Mahdi Ilbeygi,Mohammad Amini
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:185: 115649-115649 被引量:43
标识
DOI:10.1016/j.eswa.2021.115649
摘要

• A combination of a CNN and Capsule Neural Networks helps improve verification. • A single branch network is trained simultaneously by two images at the same. • A CapsNet can detect the details of angular and spatial changes in signature. • The verification model size is reduced by half compared to Siamese networks. • A composite network architecture can dramatically increase verification accuracy. Offline Signature verification is a biometric method with important applications in financial, legal and administrative procedures. The verification process includes comparing the extracted features of a questioned signature with those of genuine signatures of a certain individual. There are many challenges in designing offline signature verification as dynamic temporal features of signatures are not available. Deep Convolutional Neural Networks (DCNNs) have the great capability of extracting features from signature images. Despite the important advantages of these networks, they are unable to recognize the spatial properties of each feature in a signature. In addition, max-pooling layers usually eliminate some features that are crucial for forgery detection. In this paper, we propose a novel signature verification model with a combination of a CNN and Capsule Neural Networks (CapsNet) in order to capture spatial properties of signature features, improve the feature extraction phase, and reduce the complexity of the network. Moreover, we designed a new training mechanism in which a single network is trained simultaneously by two images at the same level so that the training parameters are reduced by half. Such mechanism does not require two separate networks for learning the features. Finally, a composite backbone architecture is presented with the hybrid of the proposed CNN-CapsNet models which we name CBCapsNet. The evaluation results demonstrate that our proposed model can improve accuracy and outperform prevalent signature verification methods in the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangdong完成签到,获得积分0
刚刚
乐观保温杯完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
慕青应助月亮moon采纳,获得10
4秒前
没所谓完成签到,获得积分10
4秒前
vtfangfangfang完成签到,获得积分10
4秒前
4秒前
yyh发布了新的文献求助10
6秒前
骆凤灵发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
微微发布了新的文献求助20
8秒前
8秒前
yznfly应助red采纳,获得200
9秒前
lidow发布了新的文献求助10
9秒前
kat完成签到 ,获得积分10
9秒前
10秒前
10秒前
suibiao发布了新的文献求助10
10秒前
ylh发布了新的文献求助10
11秒前
11秒前
nszws发布了新的文献求助10
11秒前
12秒前
13秒前
687发布了新的文献求助10
13秒前
13秒前
14秒前
月亮moon发布了新的文献求助10
15秒前
机智的凡梦完成签到,获得积分10
15秒前
15秒前
蓝天发布了新的文献求助10
16秒前
充电宝应助健忘南松采纳,获得10
16秒前
lidow完成签到,获得积分10
17秒前
17秒前
Hello应助肯努力采纳,获得10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605551
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862295
捐赠科研通 4701787
什么是DOI,文献DOI怎么找? 2542138
邀请新用户注册赠送积分活动 1507793
关于科研通互助平台的介绍 1472113