清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Jiangnan dietary pattern actively prevents muscle mass loss: Based on a cohort study

医学 置信区间 优势比 人口 队列 人口学 方差分析 肌萎缩 内科学 肌肉团 环境卫生 社会学
作者
Zhengyuan Wang,Xinyi Dong,Qi Song,Xueying Cui,Zehuan Shi,Jiajie Zang,Jin Su,Xiaodong Sun
出处
期刊:Journal of Human Nutrition and Dietetics [Wiley]
卷期号:35 (5): 957-967 被引量:2
标识
DOI:10.1111/jhn.12934
摘要

Abstract Background The proportion of sarcopenia in the elderly is very high, although muscle mass loss before sarcopenia covers a wider population. The present study aimed to analyse the effects of different dietary patterns on muscle mass. Methods In both 2015 and 2018, using multilayer random sampling, the same participants were selected, and the same questionnaires and machines were used. Results In total, 502 participants were selected. The >65‐year‐old group showed maximum muscle mass loss in males and females (−1.53 kg ± 4.42 and −1.14 kg ± 2.6 on average, respectively). The cumulative variance of four dietary patterns reached 52.28%. Logistical regression revealed significant differences between ʻJiangnan Dietaryʼ groups: Q2 vs. Q1 [odds ratio (OR) = 0.356, 95% confidence interval (CI) = 0.202–0.629]; Q3 vs. Q1 (OR = 0.457, 95% CI = 0.262–0.797). Relative influence factors for muscle mass loss were age (>65 vs. <45, OR = 2.027, 95% CI = 1.117–3.680), physical activity (OR = 0.550, 95% CI = 0.315–0.960), income (high vs. low, OR = 0.413, 95% CI = 0.210 –0.810), sex (female vs. male, OR = 0.379, 95% CI = 0.235–0.519). Conclusions After 3 years of follow‐up, participants' muscle mass declined significantly. The ʻJiangnan Dietaryʼ pattern prevented muscle mass loss and is recommended to the wider population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
13秒前
V_I_G完成签到 ,获得积分10
15秒前
minnie完成签到 ,获得积分10
16秒前
22秒前
专注的觅云完成签到 ,获得积分10
25秒前
怪怪完成签到,获得积分10
29秒前
Nene完成签到 ,获得积分20
33秒前
38秒前
xxfsx应助kzxhql采纳,获得10
41秒前
xxfsx应助kzxhql采纳,获得10
41秒前
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
1分钟前
MTF完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
合不着完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
6分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624