An empirical evaluation of attention-based multi-head models for improved turbofan engine remaining useful life prediction

计算机科学 水准点(测量) 感知器 人工智能 机器学习 背景(考古学) 网络体系结构 多任务学习 人工神经网络 任务(项目管理) 工程类 古生物学 计算机安全 大地测量学 系统工程 生物 地理
作者
Abiodun Ayodeji,Wenhai Wang,Jianzhong Su,Jianquan Yuan,Xinggao Liu
出处
期刊:Cornell University - arXiv 被引量:3
标识
DOI:10.48550/arxiv.2109.01761
摘要

A single unit (head) is the conventional input feature extractor in deep learning architectures trained on multivariate time series signals. The importance of the fixed-dimensional vector representation generated by the single-head network has been demonstrated for industrial machinery condition monitoring and predictive maintenance. However, processing heterogeneous sensor signals with a single-head may result in a model that cannot explicitly account for the diversity in time-varying multivariate inputs. This work extends the conventional single-head deep learning models to a more robust form by developing context-specific heads to independently capture the inherent pattern in each sensor reading. Using the turbofan aircraft engine benchmark dataset (CMAPSS), an extensive experiment is performed to verify the effectiveness and benefits of multi-head multilayer perceptron, recurrent networks, convolution network, the transformer-style stand-alone attention network, and their variants for remaining useful life estimation. Moreover, the effect of different attention mechanisms on the multi-head models is also evaluated. In addition, each architecture's relative advantage and computational overhead are analyzed. Results show that utilizing the attention layer is task-sensitive and model dependent, as it does not provide consistent improvement across the models investigated. The best model is further compared with five state-of-the-art models, and the comparison shows that a relatively simple multi-head architecture performs better than the state-of-the-art models. The results presented in this study demonstrate the importance of multi-head models and attention mechanisms to an improved understanding of the remaining useful life of industrial assets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ariaooo完成签到,获得积分10
刚刚
刚刚
1秒前
安详的冬瓜完成签到,获得积分10
1秒前
罗小黑发布了新的文献求助10
1秒前
2秒前
范雅寒完成签到 ,获得积分10
3秒前
siqi发布了新的文献求助10
3秒前
3秒前
huasheng完成签到,获得积分10
3秒前
科研通AI2S应助赵文华采纳,获得30
3秒前
科研通AI5应助guzhonghao采纳,获得30
5秒前
小树苗发布了新的文献求助10
5秒前
5秒前
茶冻芭乐发布了新的文献求助10
5秒前
Melody发布了新的文献求助10
5秒前
6秒前
leehoo发布了新的文献求助10
6秒前
killian完成签到,获得积分10
7秒前
Kombate发布了新的文献求助30
7秒前
万能图书馆应助花花花花采纳,获得10
7秒前
wangteng发布了新的文献求助10
7秒前
SiO2完成签到 ,获得积分10
7秒前
你好完成签到,获得积分10
7秒前
火火发布了新的文献求助10
8秒前
8秒前
无花果应助Liang采纳,获得10
8秒前
领导范儿应助siqi采纳,获得10
9秒前
9秒前
llly完成签到,获得积分10
9秒前
哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
手可摘星辰完成签到 ,获得积分10
10秒前
Nat完成签到,获得积分20
10秒前
orixero应助陈词滥调采纳,获得10
11秒前
lmj717完成签到,获得积分10
11秒前
找寻四氢叶酸完成签到,获得积分10
11秒前
科目三应助孙悟空大巨人采纳,获得10
13秒前
拼搏千风发布了新的文献求助10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813166
求助须知:如何正确求助?哪些是违规求助? 3357670
关于积分的说明 10387663
捐赠科研通 3074873
什么是DOI,文献DOI怎么找? 1689037
邀请新用户注册赠送积分活动 812539
科研通“疑难数据库(出版商)”最低求助积分说明 767144