Dictionary Learning Constrained Direct Parametric Estimation in Dynamic Myocardial Perfusion PET

迭代重建 初始化 参数统计 计算机科学 人工智能 正规化(语言学) 算法 体素 噪音(视频) 投影(关系代数) 模式识别(心理学) 数学 图像(数学) 统计 程序设计语言
作者
Bao Yang,Xinhui Wang,Andi Li,Jonathan B. Moody,Jing Tang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3485-3497 被引量:3
标识
DOI:10.1109/tmi.2021.3089112
摘要

In myocardial perfusion imaging with dynamic positron emission tomography (PET), direct parametric reconstruction from the projection data allows accurate modeling of the Poisson noise in the projection domain to provide more reliable estimate of the parametric images. In this study, we propose to incorporate a superior denoiser to efficiently suppress the unfavorable noise propagation during the direct reconstruction. The dictionary learning (DL) based sparse representation serves as a regularization term to constrain the intermediate K1 estimation. We rewrite the DL regularizer into a voxel-separable form to facilitate the decoupling of a DL penalized curve fitting from the reconstruction of dynamic frames. The nonlinear fitting is then solved by a damped Newton method with uniform initialization. Using simulated and patient 82Rb dynamic PET data, we study the performance of the proposed DL direct algorithm and quantitatively compare it with the indirect method with or without post-filtering, the direct reconstruction without regularization, and the quadratic penalty regularized direct algorithm. The DL regularized direct reconstruction achieves improved noise versus bias performance in the reconstructed K1 images as well as superior recovery of a reduced myocardial blood flow defect. The dictionary learned from a 3D self-created hollow sphere image yields comparable results to those using the dictionary learned from the corresponding magnetic resonance image. The uniform initializations converge to K1 estimations similar to the result from initializing with the indirect reconstruction. To summarize, we demonstrate the potential of the proposed DL constrained direct parametric reconstruction in improving quantitative dynamic PET imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dr发布了新的文献求助30
1秒前
风清扬发布了新的文献求助10
3秒前
SciGPT应助XSY采纳,获得10
3秒前
4秒前
5秒前
5秒前
Twonej应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
Twonej应助科研通管家采纳,获得30
5秒前
科研狗应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
5秒前
Twonej应助科研通管家采纳,获得30
5秒前
Twonej应助科研通管家采纳,获得20
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
Lzk应助科研通管家采纳,获得20
6秒前
下课聊里的灰色头像完成签到,获得积分10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Twonej应助科研通管家采纳,获得60
6秒前
Mic应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
Mic应助科研通管家采纳,获得10
6秒前
8秒前
卡俄斯发布了新的文献求助10
13秒前
汉堡包应助七页禾采纳,获得10
14秒前
16秒前
JamesPei应助祝我每日愉快采纳,获得10
18秒前
风枞完成签到 ,获得积分10
23秒前
23秒前
25秒前
山山完成签到,获得积分10
25秒前
26秒前
田国兵完成签到,获得积分10
27秒前
27秒前
充电宝应助lillian采纳,获得10
27秒前
dud完成签到,获得积分10
28秒前
针地很不戳完成签到,获得积分10
28秒前
克泷发布了新的文献求助10
29秒前
xingmeng完成签到,获得积分10
30秒前
往事无痕发布了新的文献求助20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869693
求助须知:如何正确求助?哪些是违规求助? 6454404
关于积分的说明 15661690
捐赠科研通 4985581
什么是DOI,文献DOI怎么找? 2688440
邀请新用户注册赠送积分活动 1630862
关于科研通互助平台的介绍 1588979