Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

湍流 噪音(视频) 统计能量分析 风洞 海洋工程 声学 计算机科学 气象学 工程类 物理 航空航天工程 图像(数学) 人工智能 振动
作者
Kai Aizawa,Masashi Komada,Hidenori Morita,Richard G. DeJong,Steve Sorenson
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:4 (2): 376-386 被引量:1
标识
DOI:10.4271/2021-01-1046
摘要

<div class="section abstract"><div class="htmlview paragraph">Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure. Another concern about utilizing the coupled-SEA to wind noise development is the estimation of the turbulent and acoustic input. Several options are available for identifying the input, such as on-road data measurement, CFD simulation, and numerical turbulent model estimation. Because the turbulent model can be helpful to consider the countermeasure direction, the turbulent model application to coupled-SEA is considered. However, an appropriate turbulent model is still unclear whereas there are many kinds of turbulent models proposed. Due to this, as the next step, this paper performs a validation study in a wind tunnel to identify the suitable turbulent model for the wind noise simulation. Lastly, the entire method is validated with on-road measurements. A detailed coupled-SEA model under appropriate turbulent model input simulates test case conditions and its prediction accuracy is discussed along with a wind noise.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangruize完成签到,获得积分10
刚刚
刚刚
奋斗不二完成签到,获得积分10
1秒前
沉默的皮卡丘完成签到 ,获得积分10
2秒前
早日毕业完成签到 ,获得积分10
3秒前
5秒前
大模型应助研自助采纳,获得50
5秒前
Chaowei发布了新的文献求助10
5秒前
完美世界应助Oscillator采纳,获得10
6秒前
科目三应助学XI采纳,获得10
7秒前
英姑应助拾年采纳,获得10
7秒前
9秒前
10秒前
钱念波完成签到 ,获得积分10
11秒前
兔博不秃完成签到,获得积分10
11秒前
13秒前
Lee0923完成签到,获得积分10
13秒前
13秒前
14秒前
Chaowei完成签到,获得积分10
16秒前
yahong发布了新的文献求助10
18秒前
Oscillator发布了新的文献求助10
18秒前
20秒前
21秒前
飘逸的靖巧完成签到,获得积分10
23秒前
24秒前
26秒前
linlin发布了新的文献求助10
29秒前
SYLH应助采花大盗采纳,获得10
30秒前
棉花糖发布了新的文献求助10
31秒前
风枞完成签到 ,获得积分10
31秒前
乐乐完成签到 ,获得积分10
32秒前
32秒前
lynn完成签到,获得积分10
32秒前
32秒前
aldehyde应助spy采纳,获得10
33秒前
森鹿发布了新的文献求助100
35秒前
霸王爱吃面完成签到,获得积分20
37秒前
霞霞发布了新的文献求助10
37秒前
37秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899773
求助须知:如何正确求助?哪些是违规求助? 3444383
关于积分的说明 10834833
捐赠科研通 3169381
什么是DOI,文献DOI怎么找? 1751093
邀请新用户注册赠送积分活动 846469
科研通“疑难数据库(出版商)”最低求助积分说明 789226