Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 图像(数学) 环境工程 量子力学 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔修亚完成签到,获得积分10
1秒前
蓝鲸发布了新的文献求助10
1秒前
zz关闭了zz文献求助
1秒前
1秒前
1秒前
wuming完成签到,获得积分10
1秒前
MathFun发布了新的文献求助10
1秒前
2秒前
英姑应助cellzaizia采纳,获得10
2秒前
Knight发布了新的文献求助20
2秒前
2秒前
124578发布了新的文献求助20
2秒前
3秒前
3秒前
陈一发布了新的文献求助20
3秒前
3秒前
拼搏的雨柏完成签到,获得积分10
3秒前
Ace发布了新的文献求助10
4秒前
111完成签到,获得积分10
4秒前
4秒前
yaozi发布了新的文献求助10
4秒前
火鸡发布了新的文献求助10
4秒前
流光广陵完成签到,获得积分10
4秒前
4秒前
SigRosa完成签到,获得积分10
5秒前
Moihan发布了新的文献求助10
5秒前
5秒前
6秒前
hwezhu发布了新的文献求助10
7秒前
辣条治便秘完成签到,获得积分20
7秒前
男孩发布了新的文献求助10
7秒前
Revovler发布了新的文献求助10
7秒前
zhouleiwang发布了新的文献求助10
8秒前
9秒前
JamesPei应助gy1991采纳,获得10
9秒前
多边形发布了新的文献求助10
9秒前
打打应助yaozi采纳,获得10
9秒前
绅度发布了新的文献求助10
9秒前
dddd完成签到,获得积分10
10秒前
st发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141