Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach

计算机科学 预警系统 管道运输 管道(软件) 人工智能 噪音(视频) 实时计算 普遍性(动力系统) 模式识别(心理学) 机器学习 数据挖掘 工程类 电信 物理 图像(数学) 环境工程 量子力学 程序设计语言
作者
Yiyuan Yang,Yi Li,Taojia Zhang,Yan Zhou,Haifeng Zhang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:35 (17): 14991-14999 被引量:27
标识
DOI:10.1609/aaai.v35i17.17759
摘要

Automated pipeline safety early warning (PSEW) systems are designed to automatically identify and locate third-party damage events on oil and gas pipelines. They are intended to replace traditional, inefficient manual inspection methods. However, current PSEW methods cannot achieve universality for various complex environments because they are sensitive to the spatiotemporal stability of the signal obtained by its distributed sensors at various locations and times. Our research aimed to improve the accuracy of long-distance oil–gas PSEW systems through machine learning. In this paper, we propose a novel real-time action recognition method for long-distance PSEW systems based on a coherent Rayleigh scattering distributed optical fiber sensor. More specifically, we put forward two complementary feature calculation methods to describe signals and build a new action recognition deep learning network based on those features. Encouraging empirical results on the data collected at a real location confirm that the features can effectively describe signals in an environment with strong noise and weak signals, and the entire approach can identify and locate third-party damage events quickly under various hardware conditions with accuracies of 99.26% (500 Hz) and 97.20% (100 Hz). More generically, our method can be applied to other fields as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钉大帅发布了新的文献求助20
1秒前
lzc完成签到,获得积分10
2秒前
3秒前
英俊的铭应助santley采纳,获得10
3秒前
尊敬的毛豆完成签到,获得积分10
3秒前
Ray发布了新的文献求助10
4秒前
专注的丹珍完成签到,获得积分10
5秒前
虚心听双完成签到,获得积分20
5秒前
十一发布了新的文献求助10
5秒前
李健的粉丝团团长应助qww采纳,获得10
5秒前
嗯哼完成签到 ,获得积分10
6秒前
花儿完成签到 ,获得积分10
6秒前
ww完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
鲤鱼晟睿完成签到,获得积分20
9秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
好蓝发布了新的文献求助10
14秒前
我是老大应助坦率灵槐采纳,获得10
15秒前
16秒前
18秒前
18秒前
LSzhai完成签到,获得积分10
18秒前
19秒前
ccm应助i7采纳,获得10
19秒前
liu完成签到,获得积分10
22秒前
sunjiayi完成签到,获得积分20
24秒前
01231009yrjz完成签到,获得积分10
24秒前
25秒前
科目三应助sightline_heart采纳,获得10
25秒前
28秒前
Lucas应助hkh采纳,获得10
28秒前
28秒前
陌路发布了新的文献求助20
28秒前
qinyi完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助150
29秒前
狂野觅云发布了新的文献求助10
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164