清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Paraspinal myopathy-induced intervertebral disc degeneration and thoracolumbar kyphosis in TSC1mKO mice model—a preliminary study

医学 矢状面 竖脊肌 尸体痉挛 后凸 腰椎 椎间盘 腰椎 病理 解剖 外科 射线照相术
作者
Hwee Weng Dennis Hey,Wing Moon Raymond Lam,Chloe Xiaoyun Chan,Wen‐Hai Zhuo,Elisa M. Crombie,Tuan Chun Tan,Way Cherng Chen,Simon M. Cool,Shih‐Yin Tsai
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (3): 483-494 被引量:15
标识
DOI:10.1016/j.spinee.2021.09.003
摘要

Increasing kyphosis of the spine in a human is a well-recognized clinical phenomenon that has been associated with back pain, poor physical performance and disability. The pathophysiology of age-related kyphosis is complex and has been associated with physiological changes in vertebrae, intervertebral disc (IVD) and paraspinal musculature, which current cross-sectional studies are unable to demonstrate. Creating an in vivo, paraspinal myopathic animal model for longitudinal study of these changes under controlled conditions is thus warranted.To confirm the TSC1 gene knockout effect on paraspinal muscle musculature; to analyze the development of spinal kyphosis, IVD degeneration and vertebra structural changes in a longitudinal manner to gain insights into the relationship between these processes.A prospective cohort study of 28 female mice, divided into 4 groups-9-month-old TSC1mKO (n=7), 9-month-old control (n=4), 12-month-old TSC1mKO (n=8), and 12-month-old controls (n=9).High resolution micro-computed tomography was used to measure sagittal spinal alignment (Cobb's angle), vertebral height, vertebral body wedging, disc height index (DHI), disc wedge index (DWI), histomorphometry of trabecular bone and erector spinae muscle cross-sectional area. Paraspinal muscle specimens were harvested to assess for myopathic features with H&E stain, muscle fiber size, density of triangular fiber and central nucleus with WGA/DAPI stain, and percentage of fibers with PGC-1α stain. Intervertebral discs were evaluated for disc score using FAST stain.Compared to controls, paraspinal muscle sections revealed features of myopathy in TSC1mKO mice similar to human sarcopenic paraspinal muscle. While there was significantly greater presence of small triangular fiber and density of central nucleus in 9-and 12-month-old TSC1mKO mice, significantly larger muscle fibers and decreased erector spinae muscle cross-sectional area were only found in 12-month-old TSC1mKO mice compared to controls. TSC1mKO mice developed accelerated thoracolumbar kyphosis, with significantly larger Cobb angles found only at 12 months old. Structural changes to the trabecular bone in terms of higher bone volume fraction and quality, as well as vertebral body wedging were observed only in 12-month-old TSC1mKO mice when compared to controls. Disc degeneration was observed as early as 9 months in TSC1mKO mice and corresponded with disc wedging. However, significant disc height loss was only observed when comparing 12-month-old TSC1mKO mice with controls.This study successfully shows the TSC1 gene knockout effect on the development of paraspinal muscle myopathy in a mouse which is characteristic of sarcopenia. The TSC1mKO mice is by far the best model available to study the pathological consequence of sarcopenia on mice spine. With paraspinal muscle myopathy established as early as 9 months, TSC1mKO mice developed disc degeneration and disc wedging. This is followed by kyphosis of the spine at 12 months with concomitant disc height loss and vertebral body wedging due to bone remodeling. Age-related bone loss was not found in our study, suggesting osteoporosis and myopathy-induced vertebral body wedging are likely two independent processes.This is the first study to provide key insights on the early and late consequences of paraspinal myopathy on intervertebral disc degeneration, spinal kyphosis, and vertebral body changes. With this new understanding, future studies evaluating therapies for spinal degeneration may be performed to develop time-sensitive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mkeale应助科研通管家采纳,获得20
4秒前
胖小羊完成签到 ,获得积分10
5秒前
7秒前
留白完成签到 ,获得积分10
13秒前
Gary发布了新的文献求助10
14秒前
15秒前
lanxinge完成签到 ,获得积分10
19秒前
Gary完成签到,获得积分10
23秒前
阿阿阿阿阿金完成签到 ,获得积分10
45秒前
方白秋完成签到,获得积分0
1分钟前
drhwang完成签到,获得积分10
1分钟前
2分钟前
夏茉弋发布了新的文献求助10
2分钟前
ARESCI完成签到,获得积分10
2分钟前
彭于晏应助夏茉弋采纳,获得10
2分钟前
2分钟前
2分钟前
文章多多发布了新的文献求助10
2分钟前
所所应助文章多多采纳,获得10
2分钟前
LUCKY完成签到 ,获得积分10
3分钟前
情怀应助科研通管家采纳,获得150
4分钟前
4分钟前
超大份雪碧完成签到 ,获得积分10
4分钟前
4分钟前
夏茉弋完成签到,获得积分10
4分钟前
夏茉弋发布了新的文献求助10
4分钟前
ZYP发布了新的文献求助10
5分钟前
久晓完成签到 ,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
6分钟前
ZYP完成签到,获得积分0
6分钟前
ZYP发布了新的文献求助10
6分钟前
7分钟前
doublenine18发布了新的文献求助30
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639795
求助须知:如何正确求助?哪些是违规求助? 4750532
关于积分的说明 15007352
捐赠科研通 4798008
什么是DOI,文献DOI怎么找? 2564082
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482609