暴露的
生物导体
计算机科学
Ensembl公司
源代码
软件
数据科学
医学
生物
操作系统
基因组学
基因组
环境卫生
基因
生物化学
作者
Xavier Escribà-Montagut,Xavier Basagaña,Martine Vrijheid,Juan R. González
摘要
Abstract Motivation Studying the role of the exposome in human health and its impact on different omic layers requires advanced statistical methods. Many of these methods are implemented in different R and Bioconductor packages, but their use may require strong expertise in R, in writing pipelines and in using new R classes which may not be familiar to non-advanced users. ExposomeShiny provides a bridge between researchers and most of the state-of-the-art exposome analysis methodologies, without the need of advanced programming skills. Implementation ExposomeShiny is a standalone web application implemented in R. It is available as source files and can be installed in any server or computer avoiding problems with data confidentiality. It is executed in RStudio which opens a browser window with the web application. General features The presented implementation allows the conduct of: (i) data pre-processing: normalization and missing imputation (including limit of detection); (ii) descriptive analysis; (iii) exposome principal component analysis (PCA) and hierarchical clustering; (iv) exposome-wide association studies (ExWAS) and variable selection ExWAS; (v) omic data integration by single association and multi-omic analyses; and (vi) post-exposome data analyses to gain biological insight for the exposures, genes or using the Comparative Toxicogenomics Database (CTD) and pathway analysis. Availability The exposomeShiny source code is freely available on Github at [https://github.com/isglobal-brge/exposomeShiny], Git tag v1.4. The software is also available as a Docker image [https://hub.docker.com/r/brgelab/exposome-shiny], tag v1.4. A user guide with information about the analysis methodologies as well as information on how to use exposomeShiny is freely hosted at [https://isglobal-brge.github.io/exposome_bookdown/].
科研通智能强力驱动
Strongly Powered by AbleSci AI