已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Standardized Assessment of Automatic Segmentation of White Matter Hyperintensities and Results of the WMH Segmentation Challenge

分割 高强度 人工智能 稳健性(进化) 扫描仪 计算机科学 流体衰减反转恢复 百分位 豪斯多夫距离 模式识别(心理学) 图像分割 Sørensen–骰子系数 计算机视觉 数学 磁共振成像 统计 医学 放射科 生物化学 化学 基因
作者
Hugo J. Kuijf,Adrià Casamitjana,D. Louis Collins,Mahsa Dadar,Achilleas Georgiou,Mohsen Ghafoorian,Dakai Jin,April Khademi,Jesse Knight,Hongwei Li,Xavier Lladó,J. Matthijs Biesbroek,Miguel A. Cabra de Luna,Qaiser Mahmood,Richard McKinley,Alireza Mehrtash,Sébastien Ourselin,Bo‐yong Park,Hyunjin Park,Sang Hyun Park
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2556-2568 被引量:248
标识
DOI:10.1109/tmi.2019.2905770
摘要

Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. Automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their method on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge (https://wmh.isi.uu.nl/). Sixty T1+FLAIR images from three MR scanners were released with manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. Segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: (1) Dice similarity coefficient, (2) modified Hausdorff distance (95th percentile), (3) absolute log-transformed volume difference, (4) sensitivity for detecting individual lesions, and (5) F1-score for individual lesions. Additionally, methods were ranked on their inter-scanner robustness. Twenty participants submitted their method for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MrTStar完成签到 ,获得积分10
2秒前
科研通AI5应助daisy采纳,获得30
2秒前
天真的羊青完成签到 ,获得积分10
3秒前
3秒前
迷路的雅霜完成签到,获得积分10
4秒前
善学以致用应助小杨采纳,获得10
6秒前
6秒前
mhlxxx关注了科研通微信公众号
8秒前
11秒前
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
陆沉应助科研通管家采纳,获得10
11秒前
xiaxiao应助科研通管家采纳,获得100
11秒前
xiaxiao应助科研通管家采纳,获得100
11秒前
11秒前
11秒前
12秒前
12秒前
明明完成签到,获得积分10
14秒前
weixiaosi发布了新的文献求助10
14秒前
cookie发布了新的文献求助10
15秒前
丘比特应助沙都学不会采纳,获得10
17秒前
18秒前
19秒前
Halland完成签到,获得积分10
20秒前
所所应助沐风采纳,获得10
22秒前
SCI发发发发布了新的文献求助10
23秒前
mhlxxx发布了新的文献求助10
23秒前
lixudong完成签到,获得积分10
24秒前
充电宝应助小心采纳,获得10
26秒前
28秒前
英俊的铭应助SCI发发发采纳,获得10
28秒前
28秒前
30秒前
kxm发布了新的文献求助10
31秒前
33秒前
yangbin710发布了新的文献求助10
34秒前
随风完成签到 ,获得积分10
34秒前
周宇飞发布了新的文献求助10
34秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217