Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification

计算机科学 稳健性(进化) 机器学习 人工智能 噪音(视频) 关系(数据库) 抓住 编码(集合论) 数据挖掘 生物化学 基因 图像(数学) 集合(抽象数据类型) 化学 程序设计语言
作者
Tianyu Gao,Xu Han,Zhiyuan Liu,Maosong Sun
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:33 (01): 6407-6414 被引量:214
标识
DOI:10.1609/aaai.v33i01.33016407
摘要

The existing methods for relation classification (RC) primarily rely on distant supervision (DS) because large-scale supervised training datasets are not readily available. Although DS automatically annotates adequate amounts of data for model training, the coverage of this data is still quite limited, and meanwhile many long-tail relations still suffer from data sparsity. Intuitively, people can grasp new knowledge by learning few instances. We thus provide a different view on RC by formalizing RC as a few-shot learning (FSL) problem. However, the current FSL models mainly focus on low-noise vision tasks, which makes them hard to directly deal with the diversity and noise of text. In this paper, we propose hybrid attention-based prototypical networks for the problem of noisy few-shot RC. We design instancelevel and feature-level attention schemes based on prototypical networks to highlight the crucial instances and features respectively, which significantly enhances the performance and robustness of RC models in a noisy FSL scenario. Besides, our attention schemes accelerate the convergence speed of RC models. Experimental results demonstrate that our hybrid attention-based models require fewer training iterations and outperform the state-of-the-art baseline models. The code and datasets are released on https://github.com/thunlp/ HATT-Proto.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低不言完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
阿飘应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
阿飘应助科研通管家采纳,获得10
3秒前
和谐诗双完成签到 ,获得积分10
3秒前
ding应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
iNk应助科研通管家采纳,获得10
3秒前
3秒前
阿飘应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
4秒前
脑洞疼应助zrs采纳,获得10
4秒前
5秒前
田様应助雨前知了采纳,获得10
7秒前
FOREST完成签到,获得积分10
7秒前
吱吱熊sama完成签到,获得积分10
8秒前
Airy完成签到,获得积分10
10秒前
lilac发布了新的文献求助10
10秒前
合适怜南完成签到,获得积分10
10秒前
12秒前
12秒前
13秒前
精英刺客完成签到 ,获得积分10
15秒前
遇见完成签到 ,获得积分10
17秒前
科研通AI5应助Leucalypt采纳,获得30
17秒前
忧伤的井发布了新的文献求助10
18秒前
刻苦雪晴完成签到,获得积分10
18秒前
哈哈发布了新的文献求助10
18秒前
滕州笑发布了新的文献求助10
19秒前
21秒前
Akim应助yu采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315