泽尼克多项式
自适应光学
波前
波前传感器
光学
倾斜(摄像机)
计算机科学
计算
失真(音乐)
人工神经网络
变形镜
物理
均方根
光学像差
算法
人工智能
数学
量子力学
计算机网络
放大器
带宽(计算)
几何学
作者
Qinghua Tian,Chenda Lu,Bo Liu,Lei Zhu,Xiaolong Pan,Qi Zhang,Leijing Yang,Feng Tian,Xiangjun Xin
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2019-04-03
卷期号:27 (8): 10765-10765
被引量:74
摘要
Existing wavefront sensorless (WFS-less) adaptive optics (AO) generally require a search algorithm that takes lots of iterations and measurements to get optimal results. So the latency is a serious problem in the current WFS-less AO system, especially in applications to free-space optics communication. To solve this issue, we propose a deep neural network (DNN)-based aberration correction method. The DNN model can detect the wavefront distortion directly from the intensity images, thereby avoiding time-consuming iterative processes. Since the tip-and-tilt mode of Zernike coefficients are considered, the tip-tilt correction system is not necessarily required in the proposed method. From our simulation results, the proposed method can effectively reduce the computation time and has an impressive improvement of root mean square (RMS) in different turbulence conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI