光热治疗
辐照
纳米壳
激光器
光热效应
纳米颗粒
材料科学
纳米技术
化学
光学
物理
核物理学
作者
Sajjad Pandesh,Shaghayegh Haghjooy Javanmard,Ali Shakeri‐Zadeh,Parvaneh Shokrani
标识
DOI:10.31661/jbpe.v0i0.736
摘要
Gold nanoshells can be tuned to absorb a particular wavelength of light. As a result, these tunable nanoparticles (NPs) can efficiently absorb light and convert it to heat. This phenomenon can be used for cancer treatment known as photothermal therapy. In this study, we synthesized Fe3O4@Au core-shell NPs, magnetically targeted them towards tumor, and used them for photothermal therapy of cancer.The main purpose of this research was to synthesize Fe3O4@Au core-shell NPs, magnetically target them towards tumor, and use them for photothermal therapy of cancer.In this experimental study, twenty mice received 2 × 106 B16-F10 melanoma cells subcutaneously. After tumors volume reached 100 mm3, the mice were divided into five groups including a control group, NPs group, laser irradiation group, NPs + laser group and NPs + magnet + laser group. NPs were injected intravenously. After 6 hours, the tumor region was irradiated by laser (808 nm, 2.5 W/cm2, 6 minutes). The tumor volumes were measured every other day.The effective diameter of Fe3O4@Au NPs was approximately 37.8 nm. The average tumor volume in control group, NPs group, laser irradiation group, NPs + laser irradiation group and NPs + magnet + laser irradiation group increased to 47.3, 45.3, 32.8, 19.9 and 7.7 times, respectively in 2 weeks. No obvious change in the average body weight for different groups occurred.Results demonstrated that magnetically targeted nano-photothermal therapy of cancer described in this paper holds great promise for the selective destruction of tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI