铁电性
凝聚态物理
材料科学
各向异性
多铁性
磁各向异性
铁磁性
联轴节(管道)
磁晶各向异性
极化(电化学)
磁场
物理
磁化
光电子学
电介质
光学
量子力学
物理化学
化学
冶金
作者
Anil Rajapitamahuni,Lingling Tao,Yifei Hao,Jingfeng Song,Xiaoshan Xu,Evgeny Y. Tsymbal,Xia Hong
标识
DOI:10.1103/physrevmaterials.3.021401
摘要
The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial $\mathrm{PbZ}{\mathrm{r}}_{0.2}\mathrm{T}{\mathrm{i}}_{0.8}{\mathrm{O}}_{3}$ (PZT)/$\mathrm{L}{\mathrm{a}}_{0.8}\mathrm{S}{\mathrm{r}}_{0.2}\mathrm{Mn}{\mathrm{O}}_{3}$ (LSMO) heterostructures grown on (001) $\mathrm{SrTi}{\mathrm{O}}_{3}$ substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles density functional theory calculations. Modeling the spin-orbit coupling effect with second-order perturbation theory points to the critical role of the $d$-orbital occupancy in controlling MCA. Our work provides insights into the effect of ferroelectric polarization on the magnetic anisotropy at the composite multiferroic interfaces, paving the path for their implementation into high-performance, low-power spintronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI