Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:2 (10): 749-760 被引量:1479
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明藏今完成签到,获得积分10
刚刚
Jiang_wencai发布了新的文献求助10
1秒前
yan1875完成签到,获得积分10
1秒前
1秒前
Komorebi完成签到,获得积分20
1秒前
Jinnan完成签到,获得积分10
1秒前
万莎莎发布了新的文献求助10
1秒前
乐观的幼珊完成签到,获得积分10
2秒前
木目丶发布了新的文献求助10
2秒前
2秒前
wanli445完成签到,获得积分10
2秒前
愉快天亦完成签到,获得积分10
2秒前
CodeCraft应助淡淡书竹采纳,获得10
3秒前
深情安青应助Shilly采纳,获得10
3秒前
华仔应助zhangzhang采纳,获得10
3秒前
4秒前
无花果应助能干宛秋采纳,获得10
4秒前
4秒前
Jinnan发布了新的文献求助10
5秒前
丁的完成签到,获得积分10
6秒前
阿尔卑斯完成签到,获得积分10
6秒前
革命努力发布了新的文献求助10
7秒前
星回二七完成签到,获得积分10
8秒前
发SCI完成签到,获得积分20
8秒前
打打应助科学家采纳,获得10
9秒前
斯文雪青完成签到,获得积分10
9秒前
昏睡的蟠桃应助Shilly采纳,获得20
10秒前
玉米侠完成签到,获得积分10
10秒前
科研助手6应助Wuwuwu采纳,获得10
11秒前
11秒前
11秒前
12秒前
12秒前
北海完成签到 ,获得积分10
12秒前
12秒前
12秒前
打打应助patrick采纳,获得10
14秒前
14秒前
科研通AI5应助wangx采纳,获得10
14秒前
从心从心完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798