清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction

心房颤动 医学 窦性心律 心房扑动 接收机工作特性 内科学 心脏病学 心电图
作者
Zachi I. Attia,Peter A. Noseworthy,Francisco López-Jiménez,Samuel J. Asirvatham,Abhishek Deshmukh,Bernard J. Gersh,Rickey E. Carter,Xiaoxi Yao,Alejandro A. Rabinstein,Brad J Erickson,Suraj Kapa,Paul A. Friedman
出处
期刊:The Lancet [Elsevier BV]
卷期号:394 (10201): 861-867 被引量:1138
标识
DOI:10.1016/s0140-6736(19)31721-0
摘要

Summary

Background

Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning.

Methods

We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs.

Findings

We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86–0·88), sensitivity of 79·0% (77·5–80·4), specificity of 79·5% (79·0–79·9), F1 score of 39·2% (38·1–40·3), and overall accuracy of 79·4% (79·0–79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90–0·91), sensitivity to 82·3% (80·9–83·6), specificity to 83·4% (83·0–83·8), F1 score to 45·4% (44·2–46·5), and overall accuracy to 83·3% (83·0–83·7).

Interpretation

An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation.

Funding

None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
calphen完成签到 ,获得积分10
5秒前
芹123完成签到,获得积分10
7秒前
juliar完成签到 ,获得积分10
11秒前
GGBond完成签到 ,获得积分10
16秒前
AmyHu完成签到,获得积分10
24秒前
El发布了新的文献求助10
40秒前
肖果完成签到 ,获得积分10
46秒前
nav完成签到 ,获得积分10
46秒前
51秒前
sowhat完成签到 ,获得积分10
59秒前
所所应助冷静橘子采纳,获得10
1分钟前
fogsea完成签到,获得积分0
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
健康的大船完成签到 ,获得积分10
1分钟前
1分钟前
luha发布了新的文献求助10
1分钟前
dream完成签到 ,获得积分10
1分钟前
LeoBigman完成签到 ,获得积分10
1分钟前
sweet雪儿妞妞完成签到 ,获得积分10
1分钟前
chenguo发布了新的文献求助10
1分钟前
1分钟前
zzgpku完成签到,获得积分0
2分钟前
piaoaxi完成签到 ,获得积分10
2分钟前
小二郎应助chenguo采纳,获得10
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
虚幻元风完成签到 ,获得积分10
2分钟前
烟花应助个十百千萬采纳,获得10
2分钟前
Yz完成签到 ,获得积分10
2分钟前
个十百千萬完成签到,获得积分20
3分钟前
3分钟前
3分钟前
Aurora.H完成签到,获得积分10
3分钟前
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
小小超完成签到 ,获得积分10
3分钟前
WenJun完成签到,获得积分10
3分钟前
善学以致用应助翟翟采纳,获得10
3分钟前
3分钟前
小小超发布了新的文献求助10
3分钟前
汉堡包应助小小超采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913910
求助须知:如何正确求助?哪些是违规求助? 3459009
关于积分的说明 10903786
捐赠科研通 3185671
什么是DOI,文献DOI怎么找? 1761075
邀请新用户注册赠送积分活动 851850
科研通“疑难数据库(出版商)”最低求助积分说明 792980