An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction

心房颤动 医学 窦性心律 心房扑动 接收机工作特性 内科学 心脏病学 心电图
作者
Zachi I. Attia,Peter A. Noseworthy,Francisco López-Jiménez,Samuel J. Asirvatham,Abhishek Deshmukh,Bernard J. Gersh,Rickey E. Carter,Xiaoxi Yao,Alejandro A. Rabinstein,Brad J Erickson,Suraj Kapa,Paul A. Friedman
出处
期刊:The Lancet [Elsevier BV]
卷期号:394 (10201): 861-867 被引量:1119
标识
DOI:10.1016/s0140-6736(19)31721-0
摘要

Summary

Background

Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning.

Methods

We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs.

Findings

We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86–0·88), sensitivity of 79·0% (77·5–80·4), specificity of 79·5% (79·0–79·9), F1 score of 39·2% (38·1–40·3), and overall accuracy of 79·4% (79·0–79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90–0·91), sensitivity to 82·3% (80·9–83·6), specificity to 83·4% (83·0–83·8), F1 score to 45·4% (44·2–46·5), and overall accuracy to 83·3% (83·0–83·7).

Interpretation

An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation.

Funding

None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TE完成签到,获得积分10
刚刚
李演员完成签到,获得积分10
5秒前
Loik完成签到,获得积分10
8秒前
keyantong完成签到,获得积分10
9秒前
研究生发布了新的文献求助20
19秒前
sougardenist完成签到 ,获得积分10
22秒前
呆萌芙蓉完成签到 ,获得积分10
25秒前
迅速的萧完成签到 ,获得积分10
29秒前
Tibbar完成签到 ,获得积分10
34秒前
qqqqq完成签到,获得积分10
39秒前
岚12完成签到 ,获得积分10
41秒前
leeshho完成签到,获得积分10
49秒前
fuyuhaoy完成签到,获得积分10
51秒前
xuan完成签到,获得积分10
51秒前
舒服的鱼完成签到 ,获得积分10
53秒前
chama完成签到 ,获得积分20
55秒前
深情安青应助科研通管家采纳,获得10
55秒前
cdercder应助科研通管家采纳,获得10
55秒前
小蘑菇应助科研通管家采纳,获得10
55秒前
cdercder应助科研通管家采纳,获得10
55秒前
世界和平完成签到 ,获得积分10
58秒前
俭朴钢铁侠完成签到 ,获得积分10
58秒前
有米饭没完成签到 ,获得积分10
59秒前
Hale完成签到,获得积分0
1分钟前
紫熊完成签到,获得积分10
1分钟前
闹一闹吧费曼先生完成签到 ,获得积分10
1分钟前
风格发布了新的文献求助10
1分钟前
喝开水完成签到 ,获得积分10
1分钟前
虚幻沛文完成签到 ,获得积分10
1分钟前
大鹏完成签到,获得积分10
1分钟前
风格完成签到,获得积分10
1分钟前
悠悠完成签到 ,获得积分10
1分钟前
耍酷的雪糕完成签到,获得积分10
1分钟前
OAHCIL完成签到 ,获得积分10
1分钟前
1分钟前
吨吨完成签到,获得积分10
1分钟前
strug783完成签到,获得积分10
1分钟前
CHANG完成签到 ,获得积分10
1分钟前
湖以完成签到 ,获得积分10
1分钟前
沙沙完成签到 ,获得积分0
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777699
求助须知:如何正确求助?哪些是违规求助? 3323122
关于积分的说明 10213046
捐赠科研通 3038490
什么是DOI,文献DOI怎么找? 1667412
邀请新用户注册赠送积分活动 798132
科研通“疑难数据库(出版商)”最低求助积分说明 758275