已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction

心房颤动 医学 窦性心律 心房扑动 接收机工作特性 内科学 心脏病学 心电图
作者
Zachi I. Attia,Peter A. Noseworthy,Francisco López-Jiménez,Samuel J. Asirvatham,Abhishek Deshmukh,Bernard J. Gersh,Rickey E. Carter,Xiaoxi Yao,Alejandro A. Rabinstein,Brad J Erickson,Suraj Kapa,Paul A. Friedman
出处
期刊:The Lancet [Elsevier]
卷期号:394 (10201): 861-867 被引量:1252
标识
DOI:10.1016/s0140-6736(19)31721-0
摘要

Summary

Background

Atrial fibrillation is frequently asymptomatic and thus underdetected but is associated with stroke, heart failure, and death. Existing screening methods require prolonged monitoring and are limited by cost and low yield. We aimed to develop a rapid, inexpensive, point-of-care means of identifying patients with atrial fibrillation using machine learning.

Methods

We developed an artificial intelligence (AI)-enabled electrocardiograph (ECG) using a convolutional neural network to detect the electrocardiographic signature of atrial fibrillation present during normal sinus rhythm using standard 10-second, 12-lead ECGs. We included all patients aged 18 years or older with at least one digital, normal sinus rhythm, standard 10-second, 12-lead ECG acquired in the supine position at the Mayo Clinic ECG laboratory between Dec 31, 1993, and July 21, 2017, with rhythm labels validated by trained personnel under cardiologist supervision. We classified patients with at least one ECG with a rhythm of atrial fibrillation or atrial flutter as positive for atrial fibrillation. We allocated ECGs to the training, internal validation, and testing datasets in a 7:1:2 ratio. We calculated the area under the curve (AUC) of the receiver operatoring characteristic curve for the internal validation dataset to select a probability threshold, which we applied to the testing dataset. We evaluated model performance on the testing dataset by calculating the AUC and the accuracy, sensitivity, specificity, and F1 score with two-sided 95% CIs.

Findings

We included 180 922 patients with 649 931 normal sinus rhythm ECGs for analysis: 454 789 ECGs recorded from 126 526 patients in the training dataset, 64 340 ECGs from 18 116 patients in the internal validation dataset, and 130 802 ECGs from 36 280 patients in the testing dataset. 3051 (8·4%) patients in the testing dataset had verified atrial fibrillation before the normal sinus rhythm ECG tested by the model. A single AI-enabled ECG identified atrial fibrillation with an AUC of 0·87 (95% CI 0·86–0·88), sensitivity of 79·0% (77·5–80·4), specificity of 79·5% (79·0–79·9), F1 score of 39·2% (38·1–40·3), and overall accuracy of 79·4% (79·0–79·9). Including all ECGs acquired during the first month of each patient's window of interest (ie, the study start date or 31 days before the first recorded atrial fibrillation ECG) increased the AUC to 0·90 (0·90–0·91), sensitivity to 82·3% (80·9–83·6), specificity to 83·4% (83·0–83·8), F1 score to 45·4% (44·2–46·5), and overall accuracy to 83·3% (83·0–83·7).

Interpretation

An AI-enabled ECG acquired during normal sinus rhythm permits identification at point of care of individuals with atrial fibrillation.

Funding

None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
石中酒完成签到 ,获得积分10
2秒前
3秒前
我是苯宝宝应助姚友进采纳,获得20
4秒前
AbleSpen发布了新的文献求助10
4秒前
4秒前
哈哈发布了新的文献求助10
5秒前
John发布了新的文献求助10
6秒前
孙远发布了新的文献求助10
6秒前
科研通AI6应助传统的盈采纳,获得10
7秒前
7秒前
没有昵称完成签到,获得积分10
8秒前
zzx发布了新的文献求助10
9秒前
10秒前
CodeCraft应助星辰采纳,获得10
10秒前
10秒前
CI发布了新的文献求助10
12秒前
14秒前
zzx完成签到,获得积分10
16秒前
顾矜应助橙汁采纳,获得10
16秒前
Nan发布了新的文献求助10
17秒前
苏暮迟完成签到 ,获得积分10
18秒前
浮游应助赵小胖采纳,获得10
18秒前
21秒前
甜甜向南完成签到,获得积分10
22秒前
sober完成签到 ,获得积分10
23秒前
充电宝应助xiaolong0325ly采纳,获得10
27秒前
合适钥匙发布了新的文献求助10
27秒前
田様应助冯雨宁采纳,获得10
27秒前
奇点完成签到,获得积分10
29秒前
29秒前
6666发布了新的文献求助10
31秒前
独特的亦巧完成签到,获得积分10
31秒前
林祥福发布了新的文献求助10
32秒前
SSSSCCCCIIII完成签到,获得积分10
32秒前
33秒前
万能图书馆应助克劳修斯采纳,获得10
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322677
求助须知:如何正确求助?哪些是违规求助? 4464086
关于积分的说明 13892255
捐赠科研通 4355463
什么是DOI,文献DOI怎么找? 2392359
邀请新用户注册赠送积分活动 1385998
关于科研通互助平台的介绍 1355765