Engineering E. coli for large-scale production – Strategies considering ATP expenses and transcriptional responses

经济短缺 大肠杆菌 代谢工程 比例(比率) 生产(经济) 生物反应器 生物 基质(水族馆) 基因 生化工程 计算生物学 细胞生物学 生物技术 生物化学 工程类 生态学 经济 物理 微观经济学 哲学 量子力学 政府(语言学) 植物 语言学
作者
Michael Löffler,Joana Danica Simen,Günter Jäger,Karin Schäferhoff,Andreas Freund,Ralf Takors
出处
期刊:Metabolic Engineering [Elsevier BV]
卷期号:38: 73-85 被引量:65
标识
DOI:10.1016/j.ymben.2016.06.008
摘要

Microbial producers such as Escherichia coli are evolutionarily trained to adapt to changing substrate availabilities. Being exposed to large-scale production conditions, their complex, multilayered regulatory programs are frequently activated because they face changing substrate supply due to limited mixing. Here, we show that E. coli can adopt both short- and long-term strategies to withstand these stress conditions. Experiments in which glucose availability was changed over a short time scale were performed in a two-compartment bioreactor system. Quick metabolic responses were observed during the first 30s of glucose shortage, and after 70s, fundamental transcriptional programs were initiated. Since cells are fluctuating under simulated large-scale conditions, this scenario represents a continuous on/off switching of about 600 genes. Furthermore, the resulting ATP maintenance demands were increased by about 40-50%, allowing us to conclude that hyper-producing strains could become ATP-limited under large-scale production conditions. Based on the observed transcriptional patterns, we identified a number of candidate gene deletions that may reduce unwanted ATP losses. In summary, we present a theoretical framework that provides biological targets that could be used to engineer novel E. coli strains such that large-scale performance equals laboratory-scale expectations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
失眠醉易应助131949采纳,获得20
3秒前
5秒前
5秒前
一帆风顺发布了新的文献求助10
5秒前
zhangyx完成签到 ,获得积分0
5秒前
p454q完成签到 ,获得积分10
5秒前
7秒前
bob完成签到 ,获得积分10
8秒前
关显锋完成签到,获得积分10
8秒前
8秒前
9秒前
苹果问安完成签到,获得积分10
9秒前
nana发布了新的文献求助10
10秒前
moyawen发布了新的文献求助10
12秒前
星宿陨完成签到 ,获得积分10
13秒前
131949完成签到,获得积分20
13秒前
柔弱的绮菱完成签到,获得积分10
14秒前
sunc发布了新的文献求助10
14秒前
薛定谔的猫完成签到,获得积分10
15秒前
111完成签到 ,获得积分10
16秒前
汉堡包应助wys2493采纳,获得30
16秒前
Lucas完成签到,获得积分10
17秒前
无限白易应助sciscisci采纳,获得10
18秒前
科研通AI5应助moyawen采纳,获得10
18秒前
18秒前
physicalproblem完成签到,获得积分10
19秒前
Mo完成签到,获得积分10
21秒前
天天快乐应助sunc采纳,获得10
21秒前
Wei完成签到 ,获得积分10
23秒前
玉汝于成发布了新的文献求助10
24秒前
打打应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得30
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
许甜甜鸭应助科研通管家采纳,获得10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841907
求助须知:如何正确求助?哪些是违规求助? 3383914
关于积分的说明 10532005
捐赠科研通 3104182
什么是DOI,文献DOI怎么找? 1709532
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878