已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning graph in graph convolutional neural networks for robust seizure prediction

计算机科学 卷积神经网络 发作性 图形 脑电图 人工智能 特征学习 癫痫 模式识别(心理学) 机器学习 理论计算机科学 神经科学 心理学
作者
Qi Lian,Yu Qi,Gang Pan,Yueming Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (3): 035004-035004 被引量:35
标识
DOI:10.1088/1741-2552/ab909d
摘要

Objective. Brain-computer interface (BCI) has demonstrated its effectiveness in epilepsy treatment and control. In a BCI-aided epilepsy treatment system, therapic electrical stimulus is delivered in response to the prediction of upcoming seizure onsets, therefore timely and accurate seizure prediction algorithm plays an important role. However, unlike typical signatures such as slow or sharp waves in ictal periods, the signal patterns in preictal periods are usually subtle, and highly individual-dependent. How to extract effective and robust preictal features is still a challenging problem. Approach. Most recently, graph convolutional neural network (GCNN) has demonstrated the strength in the electroencephalogram (EEG) and intracranial electroencephalogram (iEEG) signal modeling, due to its advantages in describing complex relationships among different EEG/iEEG regions. However, current GCNN models are not suitable for seizure prediction. The effectiveness of GCNNs highly relies on prior graphs that describe the underlying relationships in EEG regions. However, due to the complex mechanism of seizure evolution, the underlying relationship in the preictal period can be diverse in different patients, making it almost impossible to build a proper prior graph in general. To deal with this problem, we propose a novel approach to automatically learn a patient-specific graph in a data-driven way, which is called the joint graph structure and representation learning network (JGRN). JGRN constructs a global-local graph convolutional neural network which jointly learns the graph structures and connection weights in a task-related learning process in iEEG signals, thus the learned graph and feature representations can be optimized toward the objective of seizure prediction. Main results. Experimental results show that our JGRN outperforms CNN and GCNN models remarkably, and the improvement is more obvious when preictal features are subtle. Significance. The proposed approach promises to achieve robust seizure prediction performance and to have the potential to be extended to general problems in brain-computer interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小茄子爷爷应助鲤鱼幼翠采纳,获得100
2秒前
111完成签到 ,获得积分10
2秒前
豆沙包小团子完成签到 ,获得积分10
2秒前
清爽难胜完成签到,获得积分10
3秒前
4秒前
活泼小霜发布了新的文献求助10
8秒前
绿绿绿绿发布了新的文献求助10
10秒前
11秒前
15秒前
lennon完成签到,获得积分10
15秒前
高大厉发布了新的文献求助10
16秒前
17秒前
ycy发布了新的文献求助10
20秒前
yy发布了新的文献求助10
22秒前
yuyuxiaoyu发布了新的文献求助10
22秒前
24秒前
善学以致用应助落寞依珊采纳,获得10
25秒前
曾经的听云完成签到 ,获得积分10
26秒前
胖胖发布了新的文献求助20
27秒前
28秒前
FashionBoy应助木子采纳,获得10
29秒前
一介尘埃完成签到 ,获得积分10
32秒前
轻松的以莲完成签到,获得积分10
35秒前
wx完成签到,获得积分10
35秒前
万能图书馆应助犹豫溪灵采纳,获得10
38秒前
火星上的摩托完成签到 ,获得积分10
39秒前
orixero应助胖胖采纳,获得10
41秒前
ycy完成签到,获得积分10
41秒前
41秒前
Kaligash完成签到,获得积分10
42秒前
Ryuki完成签到 ,获得积分10
43秒前
落寞依珊发布了新的文献求助10
44秒前
英俊的铭应助李治稳采纳,获得10
44秒前
lobule发布了新的文献求助10
45秒前
llllllllllll完成签到,获得积分10
45秒前
46秒前
46秒前
jimmyhui发布了新的文献求助10
46秒前
Johnson完成签到 ,获得积分10
46秒前
48秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Study of enhancing employee engagement at workplace by adopting internet of things 200
Champagne & Shambles: The Arkwright's and the Country House in Crisis 200
The Arkwrights: Spinners of Fortune 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837178
求助须知:如何正确求助?哪些是违规求助? 3379511
关于积分的说明 10509156
捐赠科研通 3099119
什么是DOI,文献DOI怎么找? 1706922
邀请新用户注册赠送积分活动 821329
科研通“疑难数据库(出版商)”最低求助积分说明 772536