Optimizing Survival Analysis of XGBoost for Ties to Predict Disease Progression of Breast Cancer

乳腺癌 生存分析 疾病 肿瘤科 内科学 癌症 医学
作者
Pei Liu,Bo Fu,Simon X. Yang,Ling Deng,Xiaorong Zhong,Hong Zheng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (1): 148-160 被引量:96
标识
DOI:10.1109/tbme.2020.2993278
摘要

Some excellent prognostic models based on survival analysis methods for breast cancer have been proposed and extensively validated, which provide an essential means for clinical diagnosis and treatment to improve patient survival. To analyze clinical and follow-up data of 12119 breast cancer patients, derived from the Clinical Research Center for Breast (CRCB) in West China Hospital of Sichuan University, we developed a gradient boosting algorithm, called EXSA, by optimizing survival analysis of XGBoost framework for ties to predict the disease progression of breast cancer.EXSA is based on the XGBoost framework in machine learning and the Cox proportional hazards model in survival analysis. By taking Efron approximation of partial likelihood function as a learning objective for ties, EXSA derives gradient formulas of a more precise approximation. It optimizes and enhances the ability of XGBoost for survival data with ties. After retaining 4575 patients (3202 cases for training, 1373 cases for test), we exploit the developed EXSA method to build an excellent prognostic model to estimate disease progress. Risk score of disease progress is evaluated by the model, and the risk grouping and continuous functions between risk scores and disease progress rate at 5- and 10-year are also demonstrated.Experimental results on test set show that the EXSA method achieves competitive performance with concordance index of 0.83454, 5-year and 10-year AUC of 0.83851 and 0.78155, respectively.The proposed EXSA method can be utilized as an effective method for survival analysis.The proposed method in this paper can provide an important means for follow-up data of breast cancer or other disease research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗药顽完成签到,获得积分10
1秒前
听雨潇潇发布了新的文献求助10
2秒前
玛卡巴卡完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
7秒前
科研通AI5应助程莉采纳,获得10
7秒前
ZhouYW应助李荣航采纳,获得10
7秒前
Landau发布了新的文献求助10
8秒前
keko完成签到,获得积分10
8秒前
清脆雪糕发布了新的文献求助10
9秒前
hehe发布了新的文献求助10
9秒前
旺旺小小贝完成签到,获得积分10
9秒前
11秒前
11秒前
大力的汉堡完成签到,获得积分10
11秒前
贪玩的采珊完成签到,获得积分10
12秒前
Zxy发布了新的文献求助10
12秒前
Landau完成签到,获得积分10
13秒前
打打应助高乐多采纳,获得10
15秒前
怡然的谷蓝完成签到,获得积分10
15秒前
一苇以航应助毛豆爱睡觉采纳,获得20
16秒前
自信的紫夏完成签到,获得积分10
16秒前
ylky发布了新的文献求助30
16秒前
16秒前
爱学习棒棒糖完成签到,获得积分10
17秒前
42发布了新的文献求助30
17秒前
852应助坚定冬易采纳,获得10
18秒前
18秒前
ZhouYW应助李荣航采纳,获得10
19秒前
天天快乐应助lizhiqian2024采纳,获得10
19秒前
脑洞疼应助言言言言采纳,获得10
20秒前
20秒前
今后应助碧蓝梦容采纳,获得10
20秒前
科研通AI2S应助hehe采纳,获得10
21秒前
YT完成签到,获得积分10
22秒前
hello发布了新的文献求助10
24秒前
www完成签到,获得积分20
24秒前
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635