Systematic comparisons of customer base prediction accuracy: Pareto/NBD versus neural network

计算机科学 客户群 人工神经网络 基础(拓扑) 机器学习 交易数据 数据挖掘 实证研究 人工智能 帕累托原理 航程(航空) 数据库事务 营销 统计 数据库 数学 数学分析 材料科学 业务 复合材料
作者
Shao-Ming Xie,Chun‐Yao Huang
出处
期刊:Asia Pacific Journal of Marketing and Logistics [Emerald Publishing Limited]
卷期号:33 (2): 472-490 被引量:4
标识
DOI:10.1108/apjml-09-2019-0520
摘要

Purpose Predicting the inactivity and the repeat transaction frequency of a firm's customer base is critical for customer relationship management. The literature offers two main approaches to such predictions: stochastic modeling efforts represented by Pareto/NBD and machine learning represented by neural network analysis. As these two approaches have been developed and applied in parallel, this study systematically compares the two approaches in their prediction accuracy and defines the relatively appropriate implementation scenarios of each model. Design/methodology/approach By designing a rolling exploration scheme with moving calibration/holdout combinations of customer data, this research explores the two approaches' relative performance by first utilizing three real world datasets and then a wide range of simulated datasets. Findings The empirical result indicates that neither approach is dominant and identifies patterns of relative applicability between the two. Such patterns are consistent across the empirical and the simulated datasets. Originality/value This study contributes to the literature by bridging two previously parallel analytical approaches applicable to customer base predictions. No prior research has rendered a comprehensive comparison on the two approaches' relative performance in customer base predictions as this study has done. The patterns identified in the two approaches' relative prediction performance provide practitioners with a clear-cut menu upon selecting approaches for customer base predictions. The findings further urge marketing scientists to reevaluate prior modeling efforts during the past half century by assessing what can be replaced by black boxes such as NNA and what cannot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助不期采纳,获得10
刚刚
HJJHJH发布了新的文献求助10
刚刚
泛泛之交发布了新的文献求助10
刚刚
跳跃的一凤完成签到,获得积分10
刚刚
刚刚
若初拾光发布了新的文献求助10
1秒前
杰克李李完成签到,获得积分10
3秒前
3秒前
kk完成签到,获得积分10
3秒前
doctorzeng发布了新的文献求助10
4秒前
无人扶我青云志应助Steven采纳,获得10
6秒前
斯文败类应助CK先森采纳,获得10
7秒前
田様应助Kevin采纳,获得10
8秒前
科研通AI6应助HJJHJH采纳,获得10
9秒前
泠月完成签到,获得积分10
9秒前
穆仰发布了新的文献求助10
10秒前
深情安青应助若初拾光采纳,获得10
11秒前
九月完成签到,获得积分10
11秒前
江湖夜雨完成签到,获得积分10
11秒前
ding应助骨科老曺采纳,获得10
12秒前
lee完成签到 ,获得积分10
12秒前
无语的从彤完成签到,获得积分10
12秒前
呆呆关注了科研通微信公众号
12秒前
留长发的耳机完成签到,获得积分10
15秒前
16秒前
顾得白白完成签到,获得积分10
17秒前
17秒前
19秒前
Ustinian发布了新的文献求助10
20秒前
20秒前
震动的雅柔完成签到,获得积分10
21秒前
凡仔完成签到,获得积分10
21秒前
小二郎应助科研王子采纳,获得10
21秒前
22秒前
22秒前
22秒前
我本人lrx完成签到,获得积分10
23秒前
如果完成签到 ,获得积分10
23秒前
大鼻子小狗完成签到,获得积分10
23秒前
学术小白发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4476178
求助须知:如何正确求助?哪些是违规求助? 3934338
关于积分的说明 12206351
捐赠科研通 3588931
什么是DOI,文献DOI怎么找? 1973352
邀请新用户注册赠送积分活动 1010890
科研通“疑难数据库(出版商)”最低求助积分说明 904532