AD-VAT+: An Asymmetric Dueling Mechanism for Learning and Understanding Visual Active Tracking

计算机科学 人工智能 强化学习 机制(生物学) 跟踪(教育) 眼动 计算机视觉 对象(语法) 主动视觉 心理学 教育学 认识论 哲学
作者
Fangwei Zhong,Peng Sun,Wenhan Luo,Tingyun Yan,Yizhou Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1467-1482 被引量:54
标识
DOI:10.1109/tpami.2019.2952590
摘要

Visual Active Tracking (VAT) aims at following a target object by autonomously controlling the motion system of a tracker given visual observations. To learn a robust tracker for VAT, in this article, we propose a novel adversarial reinforcement learning (RL) method which adopts an Asymmetric Dueling mechanism, referred to as AD-VAT. In the mechanism, the tracker and target, viewed as two learnable agents, are opponents and can mutually enhance each other during the dueling/competition: i.e., the tracker intends to lockup the target, while the target tries to escape from the tracker. The dueling is asymmetric in that the target is additionally fed with the tracker's observation and action, and learns to predict the tracker's reward as an auxiliary task. Such an asymmetric dueling mechanism produces a stronger target, which in turn induces a more robust tracker. To improve the performance of the tracker in the case of challenging scenarios such as obstacles, we employ more advanced environment augmentation technique and two-stage training strategies, termed as AD-VAT+. For a better understanding of the asymmetric dueling mechanism, we also analyze the target's behaviors as the training proceeds and visualize the latent space of the tracker. The experimental results, in both 2D and 3D environments, demonstrate that the proposed method leads to a faster convergence in training and yields more robust tracking behaviors in different testing scenarios. The potential of the active tracker is also shown in real-world videos.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
看满天星河关注了科研通微信公众号
1秒前
1秒前
AAA关闭了AAA文献求助
2秒前
3秒前
文耳东发布了新的文献求助10
3秒前
新鲜事发布了新的文献求助10
3秒前
3秒前
大胆菲音发布了新的文献求助10
4秒前
4秒前
Hello应助小李爱查文献采纳,获得10
4秒前
Akim应助傻傻的从蕾采纳,获得10
4秒前
菜菜子发布了新的文献求助10
5秒前
小二郎应助阳炎采纳,获得10
6秒前
6秒前
7秒前
nuli发布了新的文献求助10
7秒前
小郭发布了新的文献求助10
7秒前
FashionBoy应助薛定谔的猫采纳,获得10
7秒前
勤恳完成签到,获得积分10
7秒前
所所应助ralph_liu采纳,获得10
8秒前
马丁发布了新的文献求助10
8秒前
9527发布了新的文献求助10
8秒前
风清扬发布了新的文献求助10
8秒前
CipherSage应助exy采纳,获得10
9秒前
小郭发布了新的文献求助10
9秒前
9秒前
达da完成签到,获得积分10
10秒前
lll发布了新的文献求助10
10秒前
科研通AI6应助luckyseven采纳,获得10
10秒前
lili完成签到,获得积分10
11秒前
CiCi完成签到 ,获得积分10
11秒前
黑猫乾杯应助爱笑的冷风采纳,获得10
11秒前
科研通AI2S应助asdfg123采纳,获得10
11秒前
11秒前
11秒前
qrt发布了新的文献求助10
12秒前
12秒前
BowieHuang应助yyao采纳,获得10
12秒前
新鲜事完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625765
求助须知:如何正确求助?哪些是违规求助? 4711573
关于积分的说明 14956125
捐赠科研通 4779676
什么是DOI,文献DOI怎么找? 2553867
邀请新用户注册赠送积分活动 1515779
关于科研通互助平台的介绍 1475959