Linguistic feature based learning model for fake news detection and classification

计算机科学 人工智能 文字嵌入 特征(语言学) 语言模型 维数之咒 可读性 社会化媒体 自然语言处理 机器学习 特征工程 深度学习 嵌入 语言学 程序设计语言 哲学 万维网
作者
Anshika Choudhary,Anuja Arora
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:169: 114171-114171 被引量:181
标识
DOI:10.1016/j.eswa.2020.114171
摘要

Social media is used as a dominant source of news distribution among users. The world's preeminent decisions such as politics are acclaimed by social media to influence users for enclosing users' decisions in their favor. However, the adoption of social media is much needed for awareness but the authenticity of content is an unknown factor in the current scenario. Therefore, this research work finds it imperative to propose a solution to fake news detection and classification. In the case of fake news, content is the prime entity that captures the human mind towards trust for specific news. Therefore, a linguistic model is proposed to find out the properties of content that will generate language-driven features. This linguistic model extracts syntactic, grammatical, sentimental, and readability features of particular news. Language driven model requires an approach to handle time-consuming and handcrafted features problems in order to deal with the curse of dimensionality problem. Therefore, the neural-based sequential learning model is used to achieve superior results for fake news detection. The results are drawn to validate the importance of the linguistic model extracted features and finally combined linguistic feature-driven model is able to achieve the average accuracy of 86% for fake news detection and classification. The sequential neural model results are compared with machine learning based models and LSTM based word embedding based fake news detection model as well. Comparative results show that features based sequential model is able to achieve comparable evaluation performance in discernable less time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
night发布了新的文献求助10
1秒前
ZZ完成签到,获得积分10
3秒前
柳易槐完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
SciGPT应助木目丶采纳,获得10
5秒前
guoanhong完成签到,获得积分20
5秒前
马婷婷完成签到,获得积分20
5秒前
平文发布了新的文献求助30
5秒前
酒酿萝卜皮完成签到,获得积分10
5秒前
打打应助ha采纳,获得10
5秒前
SYY完成签到,获得积分10
5秒前
香蕉觅云应助雪球采纳,获得10
6秒前
zheng发布了新的文献求助10
6秒前
6秒前
7秒前
希望天下0贩的0应助jzyy采纳,获得10
7秒前
充电宝应助Yolanda采纳,获得10
8秒前
研友_5Z4ZA5完成签到,获得积分10
9秒前
协和_子鱼发布了新的文献求助10
9秒前
Ekkoye完成签到,获得积分10
10秒前
stife32应助蒿标标采纳,获得10
10秒前
10秒前
严昌发布了新的文献求助10
10秒前
pretend完成签到,获得积分10
11秒前
13秒前
13秒前
牛马完成签到,获得积分10
13秒前
彭于彦祖应助小周小周采纳,获得20
13秒前
snail完成签到 ,获得积分10
14秒前
硫化铅完成签到,获得积分10
14秒前
yzlsci完成签到,获得积分0
15秒前
好吃完成签到,获得积分10
15秒前
情怀应助刻苦听寒采纳,获得10
16秒前
16秒前
16秒前
科研通AI5应助zdy采纳,获得10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868