What's the score? A comparison of deceased donor kidney scoring systems and correlation with graft outcome

医学 危险系数 接收机工作特性 置信区间 队列 计分系统 肾移植 比例危险模型 移植 列线图 弗雷明翰风险评分 内科学 曲线下面积 外科 疾病
作者
Kyle R. Jackson,Raghava Munivenkatappa,Russell Wesson,Jacqueline Garonzik‐Wang,Allan B. Massie,Benjamin Philosophe
出处
期刊:Clinical transplantation [Wiley]
卷期号:34 (3) 被引量:11
标识
DOI:10.1111/ctr.13802
摘要

Abstract Background A number of deceased donor kidney scoring systems have been developed to predict post‐transplant graft failure. However, studies comparing the predictive ability of these scoring systems to each other are lacking. Methods We used single‐center histopathologic and UNOS data from 140 marginal deceased donor kidneys and transplant recipients to compare the predictive accuracy of the Maryland Aggregate Pathology Index (MAPI), Kidney Donor Risk Index (KDRI), Remuzzi, and Nyberg scoring systems for 2‐year graft survival using time‐dependent receiver operating curves and Kaplan‐Meier analysis. Results MAPI had the highest predictive accuracy (area under curve [AUC] = 0.81) compared to KDRI (AUC = 0.45), Remuzzi (AUC = 0.59), and Nyberg (AUC = 0.63) for 2‐year graft survival. Furthermore, when analyzing each score according to its pre‐defined risk strata, MAPI was the only scoring system for which 2‐year graft survival was significantly different across strata (84.3% for low risk, 56.5% for intermediate risk, and 50% for high risk, P < .001). Additionally, MAPI was the only risk score significantly associated with 2‐year graft survival (hazard ratio per point: 1.12, 95% confidence interval [CI]: 1.01‐1.23, P = .03). Conclusions In a single‐center cohort of biopsied marginal kidneys used for transplantation, MAPI had the best predictive ability of these four scoring systems. When biopsy data are available for kidneys considered for transplantation, the MAPI score may provide additional information that could be used to better identify kidneys likely to have longer graft survival.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zack发布了新的文献求助30
1秒前
2秒前
2秒前
领导范儿应助zz采纳,获得10
5秒前
PARISD完成签到,获得积分10
5秒前
细心水绿完成签到,获得积分10
5秒前
寻星子发布了新的文献求助10
6秒前
6秒前
Criminology34应助YXH采纳,获得10
7秒前
7秒前
123完成签到,获得积分10
7秒前
8秒前
小不点发布了新的文献求助10
8秒前
8秒前
善学以致用应助PARISD采纳,获得10
9秒前
花花懿懿完成签到,获得积分10
9秒前
11秒前
盐焗小星球完成签到,获得积分20
12秒前
Owen应助michael采纳,获得10
12秒前
中中发布了新的文献求助10
12秒前
13秒前
卞卞完成签到,获得积分10
14秒前
zz完成签到,获得积分10
14秒前
顾矜应助燕知春采纳,获得10
14秒前
寻星子完成签到,获得积分20
15秒前
啊啊发布了新的文献求助10
16秒前
香蕉觅云应助草莓苹果采纳,获得10
17秒前
张姣姣完成签到 ,获得积分10
18秒前
冷酷沛柔完成签到,获得积分10
18秒前
yyf发布了新的文献求助10
18秒前
青春完成签到 ,获得积分10
19秒前
Orange应助jk采纳,获得10
19秒前
超级安荷发布了新的文献求助30
20秒前
斯文败类应助Zack采纳,获得30
20秒前
gxh66完成签到,获得积分10
21秒前
小仙女完成签到 ,获得积分10
21秒前
科研女仆完成签到 ,获得积分10
21秒前
lli完成签到,获得积分10
21秒前
沈格完成签到,获得积分10
22秒前
李健的粉丝团团长应助ding采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540243
求助须知:如何正确求助?哪些是违规求助? 4626777
关于积分的说明 14601084
捐赠科研通 4567821
什么是DOI,文献DOI怎么找? 2504231
邀请新用户注册赠送积分活动 1481901
关于科研通互助平台的介绍 1453541