Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm

材料科学 电解质 化学工程 人工神经网络 工艺工程
作者
Ahmed S. Menesy,Hamdy M. Sultan,Ahmed Korashy,Fahd A. Banakhr,Mohamed G. Ashmawy,Salah Kamel
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 31892-31909 被引量:32
标识
DOI:10.1109/access.2020.2973351
摘要

Recently, extracting the precise values of unknown parameters of the polymer electrolyte membrane fuel cell (PEMFC) is considered one of the most widely nonlinear and semi-empirical optimization problems. This paper proposes and applies a Modified Artificial Ecosystem Optimization (MAEO) algorithm to solve the problem of PEMFC parameters extraction. The conventional AEO is a novel optimization technique that is inspired by the energy flow in a natural ecosystem which is defined as abiotic, which includes non-living bodies and elements such as light, water and air. The proposed optimization algorithm, MAEO, is used to enhance the performance of conventional AEO and provide faster convergence rate as well as to be far away from falling into the local optima. In the proposed MAEO, an operator is suggested to improve the balance between exploitation and Exploration phases. The accurate estimation of PEMFC unknown parameters leads to develop a precise mathematical model which simulates the electrochemical and electrical characteristics of PEMFC. The objective function of the studied optimization problem is formulated as the sum of squared errors (SSE) between the measured and simulated stack voltages. To prove the reliability and capability of the proposed MAEO algorithm in solving this problem compared with other recent algorithms, it is tested on four different PEMFC stack models, namely, BCS-500W, SR-12 500W, 250W and Temasek 1 kW stacks. Moreover, statistical measures are performed to assess the superiority and robustness of the proposed algorithm. In addition, the accuracy of optimized parameters is assessed through the dynamic characteristics of PEMFCs under varying the reactants' pressures and temperature of the cell. However, the simulation results confirm that the proposed MAEO algorithm has high accuracy and reliability in extracting the PEMFC optimal parameters compared with the conventional AEO and other effective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangheng发布了新的文献求助10
1秒前
2秒前
2秒前
cdercder应助小四采纳,获得10
2秒前
3秒前
hhhhhh完成签到,获得积分10
4秒前
畅快山兰发布了新的文献求助10
6秒前
zzz完成签到,获得积分20
6秒前
小罗发布了新的文献求助10
7秒前
zqy发布了新的文献求助30
7秒前
科研混子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
星辰大海应助是风动采纳,获得10
10秒前
snailanli发布了新的文献求助10
13秒前
王心茹完成签到,获得积分20
14秒前
星辰大海应助lxz采纳,获得10
14秒前
KD发布了新的文献求助10
14秒前
河豚不擦鞋完成签到 ,获得积分10
15秒前
吴怀硕完成签到,获得积分10
15秒前
15秒前
小郭发布了新的文献求助10
16秒前
wc完成签到,获得积分10
17秒前
18秒前
小蘑菇应助吴怀硕采纳,获得10
18秒前
18秒前
小马甲应助yeayeayea采纳,获得50
19秒前
aff发布了新的文献求助10
20秒前
深情安青应助sisi采纳,获得10
20秒前
阿呆发布了新的文献求助10
21秒前
22秒前
汉堡包应助小郭采纳,获得10
22秒前
pupil发布了新的文献求助10
22秒前
难过的丹烟完成签到,获得积分10
24秒前
八九发布了新的文献求助30
25秒前
zqy完成签到,获得积分10
26秒前
26秒前
搬砖狗完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819001
求助须知:如何正确求助?哪些是违规求助? 3362082
关于积分的说明 10415374
捐赠科研通 3080404
什么是DOI,文献DOI怎么找? 1694452
邀请新用户注册赠送积分活动 814631
科研通“疑难数据库(出版商)”最低求助积分说明 768382